文档库 最新最全的文档下载
当前位置:文档库 › 矩阵的分块求逆及解线性方程组

矩阵的分块求逆及解线性方程组

矩阵的分块求逆及解线性方程组
矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组

一、 问题

化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。

二、 实验目的

学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握

用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。

三、 预备知识

1. 线性代数知识:

(1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为

???

??

??? ??---112112222

1

21111

n n n n n n x x x x x x x x x

(2)分块矩阵????

??=2221

1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设???

? ??=-2221

1211

1

B B B B A

,则2212111121

12111212222,)(B A A B A A A A B ----=-=, 1

11211211111111212221,----=-=A A B A B A A B B

(3)常用的矩阵范数为Frobenius 范数;2

1112||||||???

? ??=∑∑==n i n j ij F a A

2. 本实验所用Matlab 命令提示:

(1)输入语句:input('输入提示');

(2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end

(3)条件语句: if(条件式1)

条件块语句组1

elseif(条件式2)

条件块语句组2 else

条件块语句组3 end

(4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A );

(6)求矩阵A 的阶梯型的行最简形式:rref(A)。

四、 实验内容及要求

1. 在建立的sy31.m 文件中编程将任意给定的n 阶方阵B1,化为上三角矩阵B1;调用

时输入:B1=A ,n=6;其A 为实验1[矩阵的基本运算]中的矩阵A 矩阵;

2. 在建立的sy32.m 文件中编程用1~6单位增量的行向量产生一个范德蒙矩阵B2; 3. 在建立的sy33.m 文件中编程对任意输入的高阶分块可逆矩阵B3实现分块法求逆;

(1)调用sy33.m 文件时输入:B3=A^2 ,输入n1=2求出B3的逆C2 ; (2)调用sy33.m 文件时输入同上的B3,输入n1=4求出B3的逆C4 ; (3)调用sy33.m 文件时输入同上的B3,输入n1=6求出B3的逆C6 ;

(4)用norm()函数对上面三种方法所求的逆作误差分析[即作(B3*Ci -E)的范数]; 4. 建立sy34.m 文件,求下列非齐次线性方程组的通解。

?????????

??=-++-+-=+++--=+++-=-+++=-++-+=+-+++2

4663555425484321

95263355442423642654321654326421

65321654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

五、思考与练习

1. 求下列齐次线性方程组的基础解系

?????????

?

?=-++-+=+++--=+++=-+++=-++-+=+-+++0

4663550425404320

95263055442023642654321654326421

65321654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

2.用任意输入的8维行向量构造一个8阶范德蒙矩阵。

六、操作提示

1.计算过程

(1)sy31.m 文件

B1=input('B1=') N=input('N=') for j=1:N

for i=j+1:N

B1(i,:)=-B1(i,j)/B1(j,j)*B1(j,:)+B1(i,:) end end B1

调用时输入:Load sy1 A B1=A ,n=6

(2)sy32.m文件

t=input('t=');

t

n=input('n=');

for i=1:n

B2(i,:)=t.^(i-1);

end

B2

调用时输入:T=1:6 ,n=6

(3)sy33.m文件

B3=input('B3=');

[n,m]=size(B3);

n1=input('n1=');

if(n1>n)

disp('n1>n')

elseif(n1==n)

C1=inv(B3)

else

b11=B3(1:n1,1:n1);

b12=B3(1:n1,n1+1:n);

b21=B3(n1+1:n,1:n1);

b22=B3(n1+1:n,n1+1:n);

ib11=inv(b11);c22=inv(b22-b21*ib11*b12);

c12=-ib11*b12*c22;c21=-c22*b21*ib11;

c11=ib11-c12*b21*ib11;

C=[c11 c12;c21 c22]

End

(1)调用时输入:B3=A^2 ,n1=4;转换C4=C;(2)调用时输入:同上的B3 ,n1=2;转换C2=C;(3)调用时输入:同上的B3 ,n1=6;转换C6=C;(4)E=eye(size(B3));

norm(B3*C2-E);

norm(B3*C4-E);

norm(B3*C6-E);

(4)sy34.m文件

A34=[1 2 4 6 -3 2 4;2 4 -4 5 1 -5 3;3 6 2 0 5 -9 -1;...

2 3 0 4 0 1 8;0 -4 -5 2 1 4 -5;5 5 -3 6 6 -4 2]

rank(A34)

A35=rref(A34)

2.计算结果

>> sy31

B1=A

B1 =

3 4 -1 1 -9 10

6 5 0

7 4 -16

1 -4 7 -1 6 -8

2 -4 5 -6 12 -8

-3 6 -7 8 -1 1

8 -4 9 1 3 0

N=6

N =

6

B1 =

3 4 -1 1 -9 10

0 -3 2 5 22 -36

1 -4 7 -1 6 -8

2 -4 5 -6 12 -8

-3 6 -7 8 -1 1

8 -4 9 1 3 0

B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 -5.3333 7.3333 -1.3333 9.0000 -11.3333

2.0000 -4.0000 5.0000 -6.0000 12.0000 -8.0000

-3.0000 6.0000 -7.0000 8.0000 -1.0000 1.0000

8.0000 -4.0000 9.0000 1.0000 3.0000 0 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 -5.3333 7.3333 -1.3333 9.0000 -11.3333

0 -6.6667 5.6667 -6.6667 18.0000 -14.6667

-3.0000 6.0000 -7.0000 8.0000 -1.0000 1.0000

8.0000 -4.0000 9.0000 1.0000 3.0000 0 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 -5.3333 7.3333 -1.3333 9.0000 -11.3333

0 -6.6667 5.6667 -6.6667 18.0000 -14.6667

0 10.0000 -8.0000 9.0000 -10.0000 11.0000

8.0000 -4.0000 9.0000 1.0000 3.0000 0 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 -5.3333 7.3333 -1.3333 9.0000 -11.3333

0 -6.6667 5.6667 -6.6667 18.0000 -14.6667

0 10.0000 -8.0000 9.0000 -10.0000 11.0000

0 -14.6667 11.6667 -1.6667 27.0000 -26.6667 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 -6.6667 5.6667 -6.6667 18.0000 -14.6667

0 10.0000 -8.0000 9.0000 -10.0000 11.0000

0 -14.6667 11.6667 -1.6667 27.0000 -26.6667 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 1.2222 -17.7778 -30.8889 65.3333

0 10.0000 -8.0000 9.0000 -10.0000 11.0000

0 -14.6667 11.6667 -1.6667 27.0000 -26.6667 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 1.2222 -17.7778 -30.8889 65.3333

0 0 -1.3333 25.6667 63.3333 -109.0000

0 -14.6667 11.6667 -1.6667 27.0000 -26.6667 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 1.2222 -17.7778 -30.8889 65.3333

0 0 -1.3333 25.6667 63.3333 -109.0000

0 -0.0000 1.8889 -26.1111 -80.5556 149.3333 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 -1.3333 25.6667 63.3333 -109.0000

0 -0.0000 1.8889 -26.1111 -80.5556 149.3333 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 22.0588 52.7059 -90.4118

0 -0.0000 1.8889 -26.1111 -80.5556 149.3333

B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 22.0588 52.7059 -90.4118

0 -0.0000 0 -21.0000 -65.5000 123.0000 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 0 20.4695 -16.7927

0 -0.0000 0 -21.0000 -65.5000 123.0000 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 0 20.4695 -16.7927

0 -0.0000 0 0 -34.8110 52.9146 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 0 20.4695 -16.7927

0 -0.0000 0 0 0 24.3566 B1 =

3.0000

4.0000 -1.0000 1.0000 -9.0000 10.0000

0 -3.0000 2.0000 5.0000 22.0000 -36.0000

0 0 3.7778 -10.2222 -30.1111 52.6667

0 0 0 -14.4706 -21.1471 48.2941

0 0 0 0 20.4695 -16.7927

0 -0.0000 0 0 0 24.3566

t=1:6

t =

1 2 3 4 5 6

n=6

B2 =

1 1 1 1 1 1

1 2 3 4 5 6

1 4 9 16 25 36

1 8 27 64 125 216

1 16 81 256 625 1296

1 3

2 24

3 102

4 312

5 777

6 >> sy33

B3=A^2

n1=2

C =

-0.0215 0.0020 -0.0408 -0.0039 -0.0064 0.0010

0.0115 0.0108 0.0057 0.0065 0.0111 0.0287

0.0339 0.0003 0.0415 0.0100 0.0115 0.0099

0.0148 -0.0116 0.0159 0.0167 0.0142 -0.0080

-0.0215 -0.0054 -0.0172 -0.0011 0.0158 0.0221

-0.0230 -0.0025 -0.0259 -0.0024 0.0034 0.0203

>> C2=C;

>> sy33

B3=A^2

n1=4

C =

-0.0215 0.0020 -0.0408 -0.0039 -0.0064 0.0010

0.0115 0.0108 0.0057 0.0065 0.0111 0.0287

0.0339 0.0003 0.0415 0.0100 0.0115 0.0099

0.0148 -0.0116 0.0159 0.0167 0.0142 -0.0080

-0.0215 -0.0054 -0.0172 -0.0011 0.0158 0.0221

-0.0230 -0.0025 -0.0259 -0.0024 0.0034 0.0203

>> C4=C

C4 =

-0.0215 0.0020 -0.0408 -0.0039 -0.0064 0.0010

0.0115 0.0108 0.0057 0.0065 0.0111 0.0287

0.0339 0.0003 0.0415 0.0100 0.0115 0.0099

0.0148 -0.0116 0.0159 0.0167 0.0142 -0.0080

-0.0215 -0.0054 -0.0172 -0.0011 0.0158 0.0221

-0.0230 -0.0025 -0.0259 -0.0024 0.0034 0.0203

>> sy33

n1=6

C1 =

-0.0215 0.0020 -0.0408 -0.0039 -0.0064 0.0010

0.0115 0.0108 0.0057 0.0065 0.0111 0.0287

0.0339 0.0003 0.0415 0.0100 0.0115 0.0099

0.0148 -0.0116 0.0159 0.0167 0.0142 -0.0080

-0.0215 -0.0054 -0.0172 -0.0011 0.0158 0.0221

-0.0230 -0.0025 -0.0259 -0.0024 0.0034 0.0203

>> C6=C;

>> E=eye(size(B3));

>> norm(B3*C2-E)

ans =

5.1671e-015

>> norm(B3*C4-E)

ans =

4.9230e-015

>> norm(B3*C6-E)

ans =

4.9230e-015

>> sy34

A34 =

1 2 4 6 -3 2 4

2 4 -4 5 1 -5 3

3 6 2 0 5 -9 -1

2 3 0 4 0 1 8

0 -4 -5 2 1 4 -5

5 5 -3

6 6 -4 2

ans =

5

A35 =

1.0000 0 0 0 0 6.8068 11.0972

0 1.0000 0 0 0 -2.2520 -0.4192

0 0 1.0000 0 0 -0.2041 -1.1384

0 0 0 1.0000 0 -1.4644 -3.2342

0 0 0 0 1.0000 -3.1000 -5.9000

0 0 0 0 0 0 0

y=k(-6.8068 2.2520 0.2401 1.4644 3.1000 1)’+(11.0972 -0.4192 -1.1384 -3.2342 -5.9000 0)’

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

矩阵分解与线性方程组求解

一、 用列主元素高斯削去法求解下述线性方程组: ?????? ?-=+--=++---=--+=--+36 15531495102210762133421342143214 3214321x x x x x x x x x x x x x x x 程序: function x=gaussa(a) m=size(a); n=m(1); x=zeros(n,1); for k=1:n-1 [c,i]=max(abs(a(k:n,k))); q=i+k-1; if q~=k d=a(q,:);a(q,:)=a(k,:);a(k,:)=d end for i=k+1:n a(i,:)=a(i,:)-a(k,:)*a(i,k)/a(k,k) end end for j=n:-1:1 x(j)=(a(j,n+1)-a(j,j+1:n)*x(j+1:n))/a(j,j) end 执行过程: >> a=[1 13 -2 -34 13;2 6 -7 -10 -22;-10 -1 5 9 14; -3 -5 0 15 -36] a = -10 -1 5 9 14 2 6 -7 -10 -22 1 13 -2 -34 13 -3 -5 0 15 -36 >> gaussa(a) a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 1.0000 13.0000 -2.0000 -34.0000 13.0000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 0 -4.7000 -1.5000 12.3000 -40.2000

线性方程组与矩阵

高代小练习 专业课研究部 一、填空题 1.设n 元齐次线性方程组的系数矩阵的秩r < n ,则方程组的基础解系由_n-r__个解向量组成. 2.向量组123,,ααα线性无关,则122331(,,)rank αααααα+++=__3____. 3.设向量组12,,,r βββ 可以由向量组12,,,s ααα 线性表出.如果向量组12,,,r βββ 线性无关,则r __<=___s (填大小关系). 4.在数域K 上的4维向量空间K 4内,给定向量组α1 =(1,-3,0,2)α2 =(-2,1,1,1)α3 =(-1,-2, 1,3),则此向量组的秩是_2____. 5.若V={(a+bi ,c+di)|a,b,c,d 属于R},则V 对于通常的加法和数乘,在复数域上是__2____维的,而在实数域上是__4_____维的. 6.设线性方程组AX=0的解都是线性方程组BX=0的解,则秩A ?>=??秩B. 7.设t ηηη,,,21 及t t ηληληλ+++ 2211都是)0(≠=b b AX 的解向量,则 =+++t λλλ 21______。 8.设任意一个n维向量都是齐次线性方程組0=AX 的解向量,则=)(A r ______。 9.已知321,,ααα是齐次方程组0=AX 的基础解系,那么基础解系还可以是______. (A) 332211αααk k k ++ (B) 133221,,αααααα+++ (C) 3221,αααα-- (D) 233211,,αααααα-+- 10.在三维几何空间中,用V 1表示通过原点的直线,V 2表示通过原点且与V 1垂直的平面,试求 21V V ?=_原点____,和21V V ?=_整个空间R 3 ____。 二.解答题 1.在4维向量空间中, (1)求基 到基 的过渡矩阵。

分块矩阵及其应用汇总

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 12:,1,2)()()i -??=???? ??+-==- ?-?? 1112ii 2122-1-1-1-1-11112221111112222211112-1221112A A A =A A A A I A F A A A A F A F A A A A F A A F 定理 如果(的逆存在,则,其中??=???? ??????=?=???????????? +=??+=???+=?+=?1112212211121112112122212222111112211111121222211122212112222222B B A B B A B B A A B B I 0AB I A A B B 0I A B A B I A B A B 0A B A B 0A B A B I 证明: 设的逆为,其中与分块形式相同,则:(1) (2)(3) (4) ? 11(4)(2)()--??-=?=-=-1-1-122111222221112222222221112A A A B A A B I B A A A A F 11121(3)(1)-??-=-?=--1-1-1-121112222111122211122211 A A A B A A A B A A B B A A 2 2(2)(1)()=-=+-122121112-1-121111*********B B A A F B B A I A F A A 将代入方程可以得到: 将代入方程可以得到:  证毕。 同理可得,A -1的另外一种表达形式为: 11,()()--??-==-??-+??-1-1-1111222111122221-1-122211 222221112F F A A A F A A A A A A F A I A F A 其中

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

分块矩阵求逆及其应用

. . . . . 目录 摘要 (1) 引言 (2) 一、概述 (2) 二、分块矩阵的求逆及其应用 (5) 第一节2×2分块矩阵的可逆性存在条件和求逆公式及其应用 (5) 第二节3×3分块矩阵的可逆性存在条件和求逆公式及其应用 (14) 结束语 (21)

分块矩阵求逆及其应用 东生 (渤海大学数学系 121000 中国) 摘要:对于分块矩阵,我们比较熟悉分块矩阵的乘法,而对于分块矩阵的求逆,经常遇到的是22?分块矩阵的逆的证明问题,很少涉及分块矩阵逆的计算,并且我们在实际问题中还会遇到33?分块矩阵(或更高阶的分块矩阵)的求逆问题,所以我们研究这样的分块矩阵的可逆性存在条件以及求逆公式显得很有意义。分块是否合理是分块矩阵运算是否简便的关键,所以本文开头便对分块方法做了总结。接着,本文研究了较为简单的22?分块矩阵的可逆性存在条件以及求逆公式,并予以证明,总结了研究方法,还深入探讨了22?分块矩阵中含有零块时的可逆性存在条件以及求逆公式。以22?分块矩阵的研究方法为基础,探讨研究了33?分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。 关键字:分块方法,分块矩阵,逆矩阵,可逆条件 Begging the negative matrix to a matrix of the cent and it ′s applying Li Dongsheng (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract: For a matrix of the cent, we relatively know with the multiplication of dividing a matrix. But for begging the negative matrix to a matrix of the cent, we usually meet is 2 the negative certificate problem of a matrix of cent of rank. It is seldom to involve to divide the calculation that a matrix inverse, and we also will meet in actual problem begging 3 the negative certificate problem of a matrix of cent of rank.(or a matrix of more high-level cent).So it is very meaningfully to study this character of inverse of existence condition of such a matrix of cent; to beg the negative formula whether cent is reasonable is the key of whether a matrix operation is simple. What is more, the beginning of thesis does the summary to a method of cent. Immediately, the thesis has studied simple 2 ranks to divide a piece of matrix and the existence condition of inverse character. Finally the thesis gives the evidence. The method has been given, and when there are zero-pieces in a matrix, the character of inverse condition and begging the

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

矩阵的初等变换与线性方程组习题含答案

第三章 矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知121011251-?? ? = ? ?-??A ,求()R A . 2.已知3210 1032 100000200000-?? ?- ? = ?- ? ?? ?B ,求()R B . 3.若矩阵,,A B C 满足=A BC ,则( ). (A)()()R R =A B (B) ()()R R =A C (C)()()R R ≤A B (D) ()max{(),()}R R R ≥A B C 4. 设矩阵X 满足关系2=+AX A X ,其中423110123?? ? = ? ?-??A ,求X . 5. 设矩阵101210325?? ?= ? ?--?? A ,求1 ()--E A . 6.A 是m n ?矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b 中方程个数少于未知数个数,那么( ). (A) =Ax b 必有无穷多解; (B) 0=Ax 必有非零解; (C) 0=Ax 仅有零解; (D) 0=Ax 一定无解. 8. 求解线性方程组 (1)12312312312333332x x x x x x x x x +-=??+-=??-+=?, (2)72315 532151011536 x y z x y z x y z ++=?? -+=??-+=? (3)123412341 23420 202220 x x x x x x x x x x x x ++-=?? ++-=??+++=?

9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-?? -=-??-=--+-? 有无穷多解,则λ= . 10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ). (A)()2,1,1- (B)201011-?????? (C)102011-????-?? (D)011422010-?? ??--?? ???? 3.4.2 提高练习 1.设A 为5阶方阵,且()3R =A ,则* ()R A = . 2.设矩阵12332354445037a a -????=-?? ??-?? A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A 3.设A 是43?矩阵,且()2R =A ,而102020103?? ? = ? ?-??B ,则()R =AB . 4.设12243311t -?? ? = ? ?-??A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -?? ? =-- ? ?-?? A , 问k 为何值,可使 (1)()1R =A (2)()2R =A (3)()3R =A . 6.设矩阵111111111111k k k k ?? ? ? = ? ? ??? A ,且()3R =A ,则k = .

相关文档