文档库 最新最全的文档下载
当前位置:文档库 › 分块矩阵的逆矩阵

分块矩阵的逆矩阵

分块矩阵的逆矩阵
分块矩阵的逆矩阵

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

分块矩阵及其应用汇总

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 12:,1,2)()()i -??=???? ??+-==- ?-?? 1112ii 2122-1-1-1-1-11112221111112222211112-1221112A A A =A A A A I A F A A A A F A F A A A A F A A F 定理 如果(的逆存在,则,其中??=???? ??????=?=???????????? +=??+=???+=?+=?1112212211121112112122212222111112211111121222211122212112222222B B A B B A B B A A B B I 0AB I A A B B 0I A B A B I A B A B 0A B A B 0A B A B I 证明: 设的逆为,其中与分块形式相同,则:(1) (2)(3) (4) ? 11(4)(2)()--??-=?=-=-1-1-122111222221112222222221112A A A B A A B I B A A A A F 11121(3)(1)-??-=-?=--1-1-1-121112222111122211122211 A A A B A A A B A A B B A A 2 2(2)(1)()=-=+-122121112-1-121111*********B B A A F B B A I A F A A 将代入方程可以得到: 将代入方程可以得到:  证毕。 同理可得,A -1的另外一种表达形式为: 11,()()--??-==-??-+??-1-1-1111222111122221-1-122211 222221112F F A A A F A A A A A A F A I A F A 其中

分块矩阵求逆及其应用

. . . . . 目录 摘要 (1) 引言 (2) 一、概述 (2) 二、分块矩阵的求逆及其应用 (5) 第一节2×2分块矩阵的可逆性存在条件和求逆公式及其应用 (5) 第二节3×3分块矩阵的可逆性存在条件和求逆公式及其应用 (14) 结束语 (21)

分块矩阵求逆及其应用 东生 (渤海大学数学系 121000 中国) 摘要:对于分块矩阵,我们比较熟悉分块矩阵的乘法,而对于分块矩阵的求逆,经常遇到的是22?分块矩阵的逆的证明问题,很少涉及分块矩阵逆的计算,并且我们在实际问题中还会遇到33?分块矩阵(或更高阶的分块矩阵)的求逆问题,所以我们研究这样的分块矩阵的可逆性存在条件以及求逆公式显得很有意义。分块是否合理是分块矩阵运算是否简便的关键,所以本文开头便对分块方法做了总结。接着,本文研究了较为简单的22?分块矩阵的可逆性存在条件以及求逆公式,并予以证明,总结了研究方法,还深入探讨了22?分块矩阵中含有零块时的可逆性存在条件以及求逆公式。以22?分块矩阵的研究方法为基础,探讨研究了33?分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。 关键字:分块方法,分块矩阵,逆矩阵,可逆条件 Begging the negative matrix to a matrix of the cent and it ′s applying Li Dongsheng (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract: For a matrix of the cent, we relatively know with the multiplication of dividing a matrix. But for begging the negative matrix to a matrix of the cent, we usually meet is 2 the negative certificate problem of a matrix of cent of rank. It is seldom to involve to divide the calculation that a matrix inverse, and we also will meet in actual problem begging 3 the negative certificate problem of a matrix of cent of rank.(or a matrix of more high-level cent).So it is very meaningfully to study this character of inverse of existence condition of such a matrix of cent; to beg the negative formula whether cent is reasonable is the key of whether a matrix operation is simple. What is more, the beginning of thesis does the summary to a method of cent. Immediately, the thesis has studied simple 2 ranks to divide a piece of matrix and the existence condition of inverse character. Finally the thesis gives the evidence. The method has been given, and when there are zero-pieces in a matrix, the character of inverse condition and begging the

分块矩阵及其应用汇总

分块矩阵及其应用 徐健, 数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块. 分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵求逆及其应用

目录 摘要 (1) 引言 (2) 一、概述 (2) 二、分块矩阵的求逆及其应用 (5) 第一节2×2分块矩阵的可逆性存在条件和求逆公式及其应用 (5) 第二节 3×3分块矩阵的可逆性存在条件和求逆公式及其应用 (14) 结束语 (21)

分块矩阵求逆及其应用 李东生 (渤海大学数学系 辽宁 锦州 121000 中国) 摘要:对于分块矩阵,我们比较熟悉分块矩阵的乘法,而对于分块矩阵的求逆,经常遇到的是22?分块矩阵的逆的证明问题,很少涉及分块矩阵逆的计算,并且我们在实际问题中还会遇到33?分块矩阵(或更高阶的分块矩阵)的求逆问题,所以我们研究这样的分块矩阵的可逆性存在条件以及求逆公式显得很有意义。分块是否合理是分块矩阵运算是否简便的关键,所以本文开头便对分块方法做了总结。接着,本文研究了较为简单的22?分块矩阵的可逆性存在条件以及求逆公式,并予以证明,总结了研究方法,还深入探讨了22?分块矩阵中含有零块时的可逆性存在条件以及求逆公式。以22?分块矩阵的研究方法为基础,探讨研究了33?分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。 关键字:分块方法,分块矩阵,逆矩阵,可逆条件 Begging the negative matrix to a matrix of the cent and it ′s applying Li Dongsheng (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract: For a matrix of the cent, we relatively know with the multiplication of dividing a matrix. But for begging the negative matrix to a matrix of the cent, we usually meet is 2 the negative certificate problem of a matrix of cent of rank. It is seldom to involve to divide the calculation that a matrix inverse, and we also will meet in actual problem begging 3 the negative certificate problem of a matrix of cent of rank.(or a matrix of more high-level cent).So it is very meaningfully to study this character of inverse of existence condition of such a matrix of cent; to beg the negative formula whether cent is reasonable is the key of whether a matrix operation is simple. What is more, the beginning of thesis does the summary to a method of cent. Immediately, the thesis has studied simple 2 ranks to divide a piece of matrix and the existence condition of inverse character. Finally the thesis gives the evidence. The method has been given, and when

矩阵的分块求逆及解线性方程组

实验4:矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构造范德蒙矩阵,高阶非奇异矩阵的分块求逆,非齐次线性方程组的通解 二、 实验目的 1. 学会使用MATLAB 编程,实施初等变换将矩阵化为上三角矩阵 2. 掌握用循环语句由已知向量构造范德蒙矩阵 3. 了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析 4. 能根据由MATLAB 所求得的非齐次线性方程组增广矩阵的阶梯形的行最简形式写出线性方程组的通解 三、 预备知识 (一) 线性代数知识 1212n 22212n 111121.[,,,]111n n n n n x x x x n x x x x x x x x x ---=? ? ? ? ? ? ? ??? 由向量作出的阶范德蒙矩阵为 11121121 221112-12122111222221111212111222 111 212221111111122111A A 2.A =,A A B B A =,B B (),,A B A A A A B A A B B B A A B A B A A ------?? ????? ??? =-=-=-=- 分块矩阵其中为方的可逆矩阵块,求逆有如下公式:设则 122113. Frobenius A ()n n ij F i j a ===∑ ∑常用的矩阵范数为范数: (二)相关命令提示: 1. 输入语句:变量名=input (‘提示信息’) 2. for 循环 3. if 结构 4. 矩阵与向量的范数:norm(A) 5. 求矩阵A 的秩:rank(A) 6. 求矩阵A 的标准阶梯形:rref(A)

相关文档