文档库 最新最全的文档下载
当前位置:文档库 › 解析几何复习系列之八(双曲线及其性质)

解析几何复习系列之八(双曲线及其性质)

解析几何复习系列之八(双曲线及其性质)
解析几何复习系列之八(双曲线及其性质)

双曲线及其性质

【复习要点】

1、双曲线的标准方程: (1)焦点在x 轴上,22221x y a b -=(0,0a b >>)(2)焦点在y 轴上,22

221y x a b

-=(0,0a b >>) 方程22Ax By C +=表示双曲线的充要条件是0ABC ≠,且A 、B 异号.

2x 、2y 系数的正负决定双曲线焦点的位置,焦点在系数为正的字母对应的坐标轴上

2、双曲线的性质:(以22

221x y a b

-=(0,0a b >>)为例) (1)范围:x a ≤-或x a ≥,y R ∈;(2)焦点:1(,0)F c -、2(,0)F c ,其中0c >且222c a b =+;

(3)对称轴:两条对称轴0,0x y ==;一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a

虚轴长为2b .

特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可以设为222(0)x y k k -=≠

3、渐近线:

(1)双曲线22221x y a b

-=的渐近线方程为22

220x y a b -= (2)以双曲线22221x y a b

-=共渐近线的双曲线方程可设为22

22x y λa b -=(0λ≠) 【强化训练】

1、若曲线22

141x y k k

+=+-表示双曲线,则实数k 的取值范围是 2、双曲线2288kx ky -=的一个焦点为(0,3),则实数k =

3、过双曲线22

1169

x y -=的左焦点1F 的弦AB 长为6,则2ABF ?(2F 为右焦点)的周长是 4、已知双曲线C :22

221x y a b

-=(0,0a b >>),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径为

5、过(7,--与两点,且焦点在x 轴上的双曲线方程是

60y +=,且与椭圆22

151

x y +=共焦点的双曲线的方程是 7、渐近线方程是12

y x =±,且焦距为10的双曲线标准方程是 8、设1F 、2F 是22

141

x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ?= ,则12PF F ?的面积为 ,P 点坐标为

9、已知方程220mx ny mn ++=(0m n <-<),则它所表示的曲线的焦点坐标是

10、已知双曲线与椭圆22

12736

x y +=相交于点(,4)m ,且有公共焦点,则双曲线方程为

11、已知点(2,0)M -、(2,0)N ,动点P 满足PM PN -=,则动点P 的轨迹方程为

12、已知双曲线的焦点是椭圆22

1169

x y +=的两个顶点,双曲线的两个顶点是椭圆的焦点,则此双曲线的方程为

13、求与圆221:(5)49C x y ++=和圆222:(5)1C x y -+=都外切的动圆的圆心C 的轨迹方程.

14、求与双曲线22

1169

x y -=共渐近线,且过点(2,3)的双曲线的方程,并回答所得的双曲线与已知双曲线是共轭双曲线吗?

15、点(

1,0)P 关于直线:2l x y -=对称的点Q 在双曲线22

21ax ay -=上,求双曲线的焦点坐标和渐近线的夹角.

双曲线几何性质 (1)

百度文库- 让每个人平等地提升自我! 1 双曲线的几何性质 学习目标:理解并掌握双曲线的几何性质,能根据性质解决一些基本问题,进一步体会数形结合的思想. 学习重点:双曲线的几何性质及其运用. 一、学习情境 类比椭圆几何性质和研究方法,我们应该如何去研究双曲线的几何性质? 二、学习任务(理P56—P58例3完;文P49—P51例3完) 问题1: 画出 1 3 42 2 2 2 = - y x 与 1 3 42 2 2 2 = - x y 的图形,观察图形你能得出双曲线的哪些性质? 问题2: 请分别从图形和方程两个角度解释这些性质. 标准方程 图象 范围 对称轴 对称中心 实虚轴 顶点 渐近线 离心率 a,b,c关系 A级理P61 (文P53) 1、2、3、4 B级习题理2.3 (文2.2) 3、4 选做题 1、已知椭圆方程 1 9 16 2 2 = + y x 和双曲线方程 1 9 16 2 2 = - x y 有下列说法: ①椭圆和双曲线的实轴长都是4,但椭圆和双曲线的实轴分别在x轴和y轴上; ②椭圆的长半轴长是4,双曲线的实轴长是3 ③它们的焦距都是10 其中说法正确的个数是() A、0 B、1 C、2 D、3个 2、根据下列条件,求双曲线方程 ①与双曲线1 4 16 2 2 = - y x 有公共焦点,且过点(2 3,2) ②与双曲线1 9 16 2 2 = - y x 有共同的渐近线,且过点(3 2,-3) 三、归纳反思 椭圆和双曲线几何性质的比较: 椭圆双曲线定义 标准方程 图形 (顶点坐 标) (焦点坐 标) 范围 轴 对称轴 (对称中 心) 离心率 及其范围 a,b,c关系 渐近线

专题九 解析几何第二十六讲 双曲线

专题九 解析几何 第二十六讲 双曲线 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y x 3.(2018全国卷Ⅲ)已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0)到C 的渐近线的距离为 A B .2 C .2 D . 4.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为 A .22139x y -= B .22193x y -= C .221412x y -= D .22 1124 x y -= 5.(2017新课标Ⅰ)已知F 是双曲线C :2 2 13y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ?的面积为 A .13 B .12 C .23 D .32 6.(2017新课标Ⅱ)若1a >,则双曲线2 221x y a -=的离心率的取值范围是

A .)+∞ B .2) C . D .(1,2) 7.(2017天津)已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 A .221412x y -= B .221124x y -= C .2213x y -= D .2 213 y x -= 8.(2016天津)已知双曲线)0,0(122 22>>=-b a b y a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为 A .1422=-y x B .1422=-y x C .15 320322=-y x D .1203532 2=-y x 9.(2015湖南)若双曲线22 221x y a b -=的一条渐近线经过点(3,4)-,则此双曲线的离心率为 A B .54 C .43 D .53 10.(2015四川)过双曲线2 213 y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB = A .3 B . C .6 D . 11.(2015重庆)设双曲线22 221(0,0)x y a b a b -=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为 A .12 B .22 C .1 D .2

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

高中数学解析几何双曲线性质与定义

双曲线 双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。 双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义 一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。 取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。 设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。 将这个方程移项,两边平方得: 两边再平方,整理得:()() 22222222a c a y a x a c -=-- 由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得: 双曲线的标准方程:122 22=-b y a x 两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上 的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义 与椭圆的方法类似:对于双曲线的标准方程:122 22=-b y a x ,我们将222b a c +=代入, 可得:()a c c a x c x y =± ±+2 2 所以有:双曲线的第二定义可描述为: 平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c a x 2 ±=)的距离之比为 常数()0c e c a a =>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双 曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e == 22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122222-=-=-==e a c a a c a b k ; 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=,相对于右焦点 )0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相对于上焦点),0(2c F 对 应着上准线 a y l 2 2:=。

双曲线的几何性质教案(精)

双曲线的简单几何性质教案课题:双曲线的简单几何性质 教学类型:新知课 教学目标: ①知识与技能 理解并掌握双曲线的几何性质, 能根据性质解决一些基本问题培养学生分析,归纳,推理的能力。 ②过程与方法 与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的方法 ③情感态度与价值观 通过本节课的学习使学生进一步体会曲线与方程的对应关系, 感受圆锥曲线在解决问题中的应用 教学方法:本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。 教学重难点: 重点:双曲线的几何性质及其运用 难点 : 双曲线渐近线,离心率的讲解 教具:多媒体 教学过程:

⑴复习提问导入新课: 首先带领学生复习椭圆的几何性质,它有哪些几何性质?(应为范围,对称性,顶点,焦点 ,离心率,准线是如何探讨的呢?(通过椭圆的标准方程探讨。让全班同学口答,并及时给以表扬。接下来让那个同学回忆双曲线的标准方程是什么?请一名同学回答。 (应为:中心在原点,焦点在 x 轴上的双曲线的标准方程为 x 2/a 2-y 2/b 2=1; 中心在原点,焦点在 y 轴上的双曲线的标准方程为 y 2/a 2-x 2/b 2=1 。回忆完旧知后,我会给 出一首歌曲《悲伤的双曲线》 (大概一分钟左右 ,引起学生兴趣,渴望知道双曲线的性质,这样顺利进入探究新知环节中。 ⑵引导探索,学习新知 1, 引导学生完成黑板上关于椭圆与双曲线性质的表格(让学生回答,教师引导, 启发,订正并写在黑板上 ,通过类比联想可以得到双曲线的范围,对称性和顶点。 2, 导出渐近线(性质 4 在学习椭圆时,以原点为中心, 2a,2b 为邻变的矩形,对于估计椭圆的形状, 画出椭圆的简图有很大帮助, 试问对双曲线, 仍然以 2a,2b 为邻边做一矩形, 那么双曲线和这个矩形有什么关系呢?这个矩型对于估计和画出双曲线有什么指导意义呢? (不要求学生回答, 只引起学生类比联想。接着在提出问题:当 a,b 为已知时,这个矩形的两条对角线所在的直线的方程是什么?(请一名同学回答。接下来按照幻灯片显示来详细解决。最后向学生说明我们研究渐近线是为了较 准确地画出双曲线的草图。 3. 顺其自然介绍离心率 由于正确的认识了渐近线的概念, 对于离心率的直观意义也就容易掌握了,为此介绍双曲线的离心率其的影响。 最后应明确的指出:双曲线的几何性质与坐标系的选择无关, 即不随坐标系的 改变而改变。

解析几何第二十七讲 双曲线

专题九解析几何 第二十七讲双曲线 2019 年 1.(2019 全国III 理10)双曲线C: x y =1 的右焦点为F,点P 在C 的一条渐进线 2 2 4 2 上,O 为坐标原点,若PO = PF ,则△PFO 的面积为A. 3 2 4 B.3 2 2 C.2 2 D.3 2 2.(2019 江苏7)在平面直角坐标系xOy 中,若双曲线 y 2 2 x 2 1(b 0) 经过点(3,4), b 则该双曲线的渐近线方程是 . x 2 y 2 3.(2019 全国I 理16)已知双曲线C: 2 2 a b 1( 0, 0) a b 的左、右焦点分别为F1,F2,

过F1 的直线与C 的两条渐近线分别交于A,B 两点.若 F A AB , F B F B ,则C 的 1 1 2 0 离心率为____________. 4.(2019 年全国II 理11)设F 为双曲线C: x 2 2 y 2 2 a 1( 0, 0) a b 的右焦点,O 为坐标 b 原点,以OF 为直径的圆与圆x2 y2 a2 交于P,Q 两点.若PQ OF ,则C 的离心率为A.2 B.3 C.2 D.5 5.(2019 浙江2)渐近线方程为x±y=0 的双曲线的离心率是A. 22 B.1 C.2 D.2 2 6. (2019 天津理5 )已知抛物线y 4x 的焦点为F ,准线为l ,若l 与双曲线 x 2 y 2 的两条渐近线分别交于点A 和点B ,且| AB | 4 | OF |(O 为 2 2 a b 1 ( 0, 0) a b 原点),则双曲线的离心率为A. 2 B. 3 1 C. 2 D. 5 2010-2018 年

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

高考数学专题10 解析几何中两类曲线相结合问题(第五篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第五篇解析几何 专题10 解析几何中两类曲线相结合问题 【典例1】【湖南省湖南师范大学附属中学2020届月考】已知椭圆C :()22 2210x y a b a b +=>>的右焦点为F , 离心率为 2 ,P 是椭圆C 上位于第一象限内的任意一点,O 为坐标原点,P 关于O 的对称点为P ',4P F PF '+=,圆O :222x y b +=. (1)求椭圆C 和圆O 的标准方程; (2)过点P 作PT 与圆O 相切于点T ,使得点F ,点T 在OP 的两侧.求四边形OFPT 面积的最大值. 【思路引导】 (1)设椭圆左焦点为F ',连接PF ',P F '',易知四边形P FPF ''为平行四边形,则 2PF PF PF P F a ''+=+=,可求得,,a b c ,即可求得椭圆C 和圆O 的标准方程; (2)设()()0000,0,0P x y x y >>,代入椭圆方程可得到00,x y 的关系式,然后分别求得,OFP OTP S S V V 的面积的表达式,即可得到四边形OFPT 面积的表达式,结合00,x y 的关系式,求OFPT 面积的最大值即可. 【详解】

(1)设椭圆左焦点为F ',连接PF ',P F '', 因为P O PO '=,OF OF '=,所以四边形P FPF ''为平行四边形, 所以24PF PF PF P F a ''+=+==,所以2a =, 又离心率为 2 ,所以c =,1b =. 故所求椭圆C 的标准方程为2 214 x y +=,圆O 的标准方程221x y +=. (2)设()()0000,0,0P x y x y >>,则220014 x y +=,故22 0014x y =-. 所以22 2000222 314TP OP OT x y x =+-= =-,所以0TP x =, 所以0124 OTP S OT TP x = ?=V . 又()0,0O ,) F ,所以0012OFP S OF y y =?=V . 故0022OFP OTP OFPT x y S S S ??==++ ???四边形V V ==. 由220014x y +=,得1≤,即001x y ?≤, 所以22 OFPT S = ≤ 四边形, 当且仅当2 2 00142x y ==,即0x =02 y = 时等号成立. 【典例2】【重庆市2019届高三高考全真模拟】已知点(1,0)F ,直线:1l x =-,P 为直角坐标平面上的动

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2?能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程? 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1?范围: 双曲线在不等式x>a与x<- a所表示的区域内. 2对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是双曲线的对称轴,原点是双曲线的对称中 心,双曲线的对称中心叫双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A i(— a,0)、A2(a,0),它们叫做双曲线的顶点. 线段A i A2叫双曲线的实轴,它的长等于2a,a叫做双曲线的实半轴长;

线段B1B2叫双曲线的虚轴,它的长等于2b,b叫做双曲线的虚半轴长 4.渐近线 ①我们把两条直线y= ± -x叫做双曲线的渐近线; a 2 2 ②从图可以看出,双曲线笃爲1的各支向 a b 外延伸时,与直线y= ± - x逐渐接近. a ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 2 2 注意:⑴求渐近线方程的简便方法:令方程左边等于零即务 / 0 a b ⑵等轴双曲线一般可设为x2 y2 k 等轴双曲线的性质:①离心率为 2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y=±x且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角 5.离心率:

解析几何(直线与圆、椭圆、双曲线和抛物线)

2012届数学二轮复习专题十 考试范围:解析几何(直线与圆、椭圆、双曲线和抛物线) 一、选择题(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线07 tan =+y x π 的倾斜角是 ( ) A .7 π - B . 7π C .75π D .7 6π 2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 ( ) A .012=--y x B .072=-+y x C .042=--y x D .05=-+y x 3.“2-=a ”是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.直线0=+++b a by ax 与圆222=+y x 的位置关系为 ( ) A .相交 B .相切 C .相离 D .相交或相切 5.已知点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,若PQ 的最小值为122-,则k = ( ) A .1 B .1- C .0 D .2 6.若椭圆122=+my x 的离心率??? ? ??∈22, 33e ,则m 的取值范围是 ( ) A .?? ? ??32,21 B .()2,1 C .()2,132,21 ?? ? ?? D .??? ??2,21 7.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为 ( ) A . 3 3 2 B . 3 C .2或3 3 2 D . 3 3 2或3 8.M 是抛物线x y 42 =上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最 小的角为60°,则=FM ( ) A .2 B .3 C .4 D .6 9.设抛物线x y 82 =的准线经过中心在原点,焦点在坐标轴上且离心率为 2 1 的椭圆的一个顶点,则此椭圆的方程为 ( ) A .1161222=+y x 或112 1622=+y x B .1644822=+y x 或1486422=+y x C .112 162 2=+y x 或 143 1622=+x y D .13 422=+y x 或143 1622=+x y 10.已知定点()0,21-F 、()0,22F ,动点N 满足1=ON (O 为坐标原点),NM M F 21=,()R MF MP ∈=λλ2,01=?PN M F , 则点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .圆 二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上) 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的标准方程是 . 12.圆06442 2=++-+y x y x 上到直线05=--y x 的距离等于 2 2 的点有 个. 13.若点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:2 2=+-y x C 只有一个公共点M ,且PM 的最小值为4,则=m .

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

解析几何吕林根课后习题解答一到五.docx

第一章矢量与坐标 § 1.1矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. 解: 2.设点 O 是正六边形 ABCDEF的中心, 在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD、DE 、 EF O 和 FA 中,哪些矢量是相等的? [解 ]: 图 1-1 3.设在平面上给了一个四边形ABCD,点 K、L、 M、N 分别是边AB、BC、CD、 DA的中点,求证:KL = NM .当ABCD是空间四边形时,这等式是否也成立? [证明 ]: . 4.如图1-3,设ABCD-EFGH是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相反 矢量的矢量: (1) AB、; (2) AE、; (3) AC 、 CD CG EG ; (4)AD 、 GF ;(5)BE 、 CH . 解: 图1—3

§ 1.2矢量的加法 1.要使下列各式成立,矢量a,b 应满足什么条件? (1)a b a b;(2)a b a b ; (3)a b a b ;(4)a b a b ; (5)a b a b . 解: § 1.3数量乘矢量 1试解下列各题. ⑴化简 (x y) (a b) (x y) (a b) . ⑵已知 a e1 2 e2e3, b 3e12e2 2 e3,求a b , a b 和 3 a 2 b . ⑶ 从矢量方程组解:3 x 4 y a ,解出矢量 x ,y.2 x 3 y b 2 已知四边形ABCD 中, AB a 2 c ,CD 5 a 6 b 8 c ,对角线AC 、 BD 的中 点分别为 E 、 F ,求EF. 解: 3 设AB a 5 b , BC 2 a 8 b ,CD3( a b) ,证明: A 、 B 、 D 三点共线.解:

双曲线的简单几何性质总结归纳(人教版)教学教材

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中 22b a c +=a PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

专题九 解析几何第二十七讲 双曲线

2 2 - - = > > - = > > - = > > = 2 专题九 解析几何 第二十七讲 双曲线 2019 年 2 1.(2019 全国 III 理 10)双曲线 C : x y =1 的右焦点为 F ,点 P 在 C 的一条渐进线 4 2 上,O 为坐标原点,若 PO = PF ,则△PFO 的面积为 A . 3 2 4 B . 3 2 2 C . 2 2 y 2 D . 3 2.(2019 江苏 7)在平面直角坐标系 xOy 中,若双曲线 x - = 1(b > 0) 经过点(3,4), b 2 则该双曲线的渐近线方程是 . x 2 3.(2019 全国 I 理 16)已知双曲线 C : a 2 y 2 1(a 0, b 0) 的左、右焦点分别为 F 1,F 2, b 2 过 F 1 的直线与 C 的两条渐近线分别交于 A ,B 两点.若 F 1 A = AB , F 1B ? F 2 B = 0 ,则 C 的离心率为 . 4.(2019 年全国 II 理 11)设 F 为双曲线 C : x a 2 y 2 1(a 0, b 0) 的右焦点, O 为坐标 b 2 原点,以OF 为直径的圆与圆 x 2 + y 2 = a 2 交于 P ,Q 两点.若 PQ = OF ,则 C 的离心率 为 A . B . C .2 D . 5.(2019 浙江 2)渐近线方程为 x ±y =0 的双曲线的离心率是 A . 2 2 B .1 C . 2 D .2 6. ( 2019 天津理 5 ) 已知抛物线 y 2 = 4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2 y 2 1 (a 0, b 0) 的两条渐近线分别交于点 A 和点 B ,且| AB | 4 | OF | ( O 为 a 2 b 2 原点),则双曲线的离心率为 A. B. C. 2 D. 2 2 3 5 3 5 2

相关文档
相关文档 最新文档