文档库 最新最全的文档下载
当前位置:文档库 › 算术平均_几何平均不等式的经典证明

算术平均_几何平均不等式的经典证明

算术平均_几何平均不等式的经典证明
算术平均_几何平均不等式的经典证明

河南省:必修(5):算术平均数与几何平均数(焦作市第十一中学-郭振东)

《算术平均数与几何平均数》 焦作市第十一中学 郭振东 【教学目标】 (1) 知识目标 使学生能准确表达两个重要不等式;理解它们成立的条件和意义;能正确运用算术平均数与几何平均数定理求最值. (2) 能力目标 通过对实例的分析和提炼培养学生的观察、分析和抽象、概括能力;通过师生间的合作交流提高学生的数学表达和逻辑思维能力. (3) 情感目标 让学生经历知识的发生、发展、应用的全过程,鼓励学生在学习中勤于思考,积极探索;通过去伪存真的学习过程培养学生批判质疑的理性思维和锲而不舍追求真理的精神. 【教学重点】两个正数的算术平均数与几何平均数定理及应用定理求最值. 【教学难点】在求最值时如何正确运用定理. 【教学过程】 Ⅰ.引言: 某人中秋节到超市买两斤糖果,不巧超市的电子秤坏了,但超市还有一个不等臂但刻度准确的坏天平,于是售货员先把糖果放在天平的左侧称出“一斤”,再拿出一些糖果放在天平的右侧称出“一斤”,然后把两次称出的糖果合在一起给了他,并且解释:“一边多一边少,加在一起就正好.”这种称法准确么?如果不准确,那么是称多了还是称少了? 【分析】设天平左右两侧力臂长分别为1l 、2l ,两次称得的糖果实际重量为x 、y 则:12xl l =,12l yl =,

∴2112 l l x y l l +=+ 这个数比2大还是小呢?有没有好的解决方法?请同学们阅读课本第9,10页算术平均数与几何平均数一节的正文及例1,看看能否在课本中找到答案。同时思考以下问题: 问题1.糖果给多了还是少了?你用什么知识解决了这个问题?如何解决的? 问题 2.除定理外还有一个重要不等式,内容是什么?它与定理有哪些相同点和不同点? 问题3.认真分析例1及其证明过程,你能得到什么启示? Ⅱ. 阅读课文,找寻答案 学生阅读课本后回答问题1和问题2,引出本节知识 一.两重要不等式 如果,a b R ∈那么222a b ab +≥ (当且仅当a b =时取“=”号). 定理 如果,a b 是正数,那么2 a b +(当且仅当a b =时取“=”号). 想一想:“当且仅当”的含义是什么? 介绍2 a b +叫做a 、b a 、 b 的几何平均数. 数列解释:两个正数的等差中项不小于它们的正项等比中项. Ⅲ.例题精析,去伪存真 二.定理应用 例1. 已知,x y 都是正数,求证: (1)如果积xy 是定值P ,那么当x y =时,和x y + 有最小值 (2)如果和x y +是定值S ,那么当x y =时,积xy 有最大值214 S . 回答问题3,得出:

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

算术-几何平均值不等式

算术-几何平均值不等式 信息来源:维基百科 在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。设为个正实 数,它们的算术平均数是,它们的几何平均数是。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当。 算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。 算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。 例子 在的情况,设: ,那么 .可见。 历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。的情况很早就为人所知,但对于一般的,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。 柯西的证明 1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]: 命题:对任意的个正实数, 当时,显然成立。假设成立,那么成立。证明:对于个正实数, 假设成立,那么成立。证明:对于个正实数,设,,那么由于成立,。 但是,,因此上式正好变成 也就是说

综上可以得到结论:对任意的自然数,命题都成立。这是因为由前两条可以得到:对任意的自然数,命题都成立。因此对任意的,可以先找使得,再结合第三条就可以得到命题成立了。 归纳法的证明 使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]: 由对称性不妨设是中最大的,由于,设,则,并且 有。 根据二项式定理, 于是完成了从到的证明。 此外还有更简洁的归纳法证明[3]: 在的情况下有不等式和成立,于是:

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

常见的几何体计算公式

常见几何体的面积、体积求法与应用 要计算某材料的密度、重量,研究某物体性能及其物质结构等,特别对于机械专业的学生,必须要求工件的面积、体积等,若按课本上公式来计算,而课本上公式不统一,不好记住,并且很繁杂,应用时要找公式,对号入座很麻烦。笔者在教学与实践中总结出一种计算常见几何体的面积、体积方法。其公式统一,容易记住,且计算简单。对技校学生来说,排除大部分繁琐的概念、定理,以及公式的推导应用等。 由统计学中的用加权平均数对估计未来很准确。比如,估计某商品下个月销售量,若去年平均销售量为y ,设本月权为4,上月权数为1,下月权数为1,各月权数分别乘销售量相加后除以6等于y 。这样能准确地确定下个月销售量。能不能以这种思想方法用到求几何体的面积、体积呢?通过推导与实践,对于常见的几何体确实可用这种方法来求得其面积、体积。下面分别说明求常见几何体的面积、体积统一公式的正确性与可用性。 常见几何体的面积、体积统一公式: ) 4(6 )4(621002100S S S h V C C C h A ++= ++= (其中A 为几何体侧面积,C 0为上底面周长,C 1为中间横截面周长,C 2 为下底面周长,V 为几何体体积,S 0为上底面面积,S 1为中间横截面面积,S 2为下底面面积,h 为高,h 0为斜高或母线长。注:中间横截面为上、下底等距离的截面。) 一、棱柱、棱锥、棱台、圆柱、圆锥、圆台的面积 、体积用统一公式的正确性 1、棱柱: ⑴据棱柱上底周长、下底周长、中间横截面周长相等,即2 1 C C C ==, 可得: 2020210066 )4(6 C h C h C C C h =?= ++,这与课本中的棱柱侧面积公式等同。 以下每个几何体都能推得与课本中相应公式等同,说明这统一公式的正确性。 ⑵据棱柱上底面、下底面、中间横截面相等,可知:2 1 S S S ==,即: h S S S S h S S S h V 2222210)4(6 )4(6 =++= ++= 。 2、棱锥 ⑴设底边长为a 2,边数为n ,斜高为h 0,侧面三角形中位线为a 1,则

上海市各地区初中数学一模几何证明题合集

1、(2016闸北)如图,在△ABC 中,AC BC =,90BCA ∠=?,点E 是斜边AB 上的一 个动点(不与A 、B 重合), 作EF AB ⊥交边BC 于点F ,联结AF 、EC 交于点G ; (1)求证:△BEC ∽△BFA ; (2)若:1:2BE EA =,求ECF ∠的余弦值; 2、(2016杨浦)已知,如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC , 点F 在边AB 上, 2BC BF BA =?,CF 与DE 相交于点G ; (1)求证:DF AB BC DG ?=?; (2)当点E 为AC 中点时,求证:2EG AF DG DF = ; 3、(2016徐汇)如图,在△ABC 中,AC BC =,点D 在边AC 上,AB BD =,BE ED =, 且CBE ABD ∠=∠, DE 与CB 交于点F ; 求证:(1)2BD AD BE =?;(2)CD BF BC DF ?=?; 4、(2016松江)已知如图,在△ABC 中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上, 且2BD =BE BC ?; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =?;

5、(2016普陀) 已知如图,在四边形ABCD 中,ADB ACB ∠=∠,延长AD 、BC 相交 于点E , 求证:(1)△ACE ∽△BDE ; (2)BE DC AB DE ?=?; 6、(2016浦东)如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E , AD AC =,EC 交AD 于F ; (1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =; 7、(2016闵行)如图,已知在△ABC 中,AB AC =,点D 为BC 边的中点,点F 在边AB 上,点E 在线段DF 的 延长线上,且BAE BDF ∠=∠,点M 在线段DF 上,且EBM C ∠=∠; (1)求证:EB BD BM AB ?=?; (2)求证:AE BE ⊥; 8、(2016静安、青浦)已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上, BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =?; (1)求证:ADC DCE EAF ∠=∠+∠; (2)求证:AF AD AB EF ?=?;

高考数学百大经典例题 算术平均数与几何平均数

典型例题一 例1 已知R c b a ∈,,,求证.2 2 2 ca bc ab c b a ++≥++ 证明:∵ ab b a 22 2 ≥+, bc c b 222 ≥+, ca a c 22 2 ≥+, 三式相加,得 )(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握. 典型例题二 例2 已知c b a 、、是互不相等的正数, 求证:abc b a c c a b c b a 6)()()(2 2 2 2 2 2 >+++++ 证明:∵022 2>>+a bc c b ,, ∴abc c b a 2)(22 >+ 同理可得:abc b a c abc c a b 2)(2)(2 2 2 2 >+>+,. 三个同向不等式相加,得 abc b a c c a b c b a 6)()()(222222>+++++ ① 说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号. 典型例题三 例3 求证)(2222222c b a a c c b b a ++≥+++++. 分析:此问题的关键是“灵活运用重要基本不等式ab b a 22 2≥+,并能由) (2c b a ++这一特征,思索如何将ab b a 22 2≥+进行变形,进行创造”. 证明:∵ab b a 22 2≥+, 两边同加2 2b a +得2 2 2 )()(2b a b a +≥+. 即2 )(2 2 2 b a b a +≥+.

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

算术—几何平均不等式

江苏省郑梁梅高级中学高二数学教学案(理) 主备人:冯龙云 做题人:顾华章 审核人:曾庆亚 课题:算术—几何平均不等式 一、教学目标: 1.掌握平均不等式的基本形式和特点,体会特殊化到一般化的思考方法; 2.利用平均不等式证明相关结论; 二、教学重点、难点 重点:掌握平均不等式的基本形式和特点; 难点:利用平均不等式证明相关结论。 三、教学过程 1、问题情境 复习回顾:基本不等式 2、建构数学 算术—几何平均不等式: 3、数学运用 例1、设,,a b c 为正数,证明:2 (1)()16ab a b ab ac bc c abc ++++++≥。

例2、设12,,,n a a a L 为正数,求证:1212111n n a a a n n a a a +++≥+++L L 。 例3、证明:对于任意正整数n ,有111(1)(1)1n n n n ++<+ +。 4、课堂练习 (1)已知x 、y 都是正数,且 141x y +=,求x y +的最小值。 (2)已知x 、y 都是正数,且x y >,求证:22 12232x y x xy y + ≥+-+。 5、课堂小结 四、板书设计 五、教学后记

江苏省郑梁梅高级中学高二数学作业(理) 班级__________ 姓名________ 学号_________ 1、设,,a b c 为正实数,求证:333111abc a b c +++≥ 2、已知a 、b 为正数,求证:22 (1)(1)9a b a b ab ++++≥。 3、已知a 、b 、c 为正数,且()1abc a b c ++=,求()()a b a c ++的最小值。

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

初二数学平行四边形压轴:几何证明题

1 / 1 初二数学平行四边形压轴:几何证明题 1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明; (2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。 2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1. (1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:OP=OQ ; (2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形. 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC. ⑴求证:BE =DG ; ⑵若∠B =60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. B F C G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B E D A D E F C B

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

上海初二数学几何证明练习之全等三角形

上海初中数学几何证明练习之全等三角形 一、填空题(每小题2分,共20分) 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌ (第1题) (第 2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB = A′B′,AD = A′D′,若使△ABC ≌△A′B′C′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形 完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向 的长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点, 则DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________. 9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , M N D C B A E D C B A

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。 3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。(用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。 4、平行同一平面的两平面平行。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 七、两异面直线所成角的求法 1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。

三个正数的算术-几何平均不等式优秀教学设计

三个正数的算术-几何平均不等式 【教学目标】 1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式。 【教学重难点】 1.三个正数的算术-几何平均不等式 2.利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题 【教学过程】 一、知识学习: 定理3:如果+∈R c b a ,,,那么 33abc c b a ≥++。当且仅当c b a ==时,等号成立。 推广: n a a a n +++ 21≥n n a a a 21 。当且仅当n a a a === 21时,等号成立。 语言表述:n 个正数的算术平均数不小于它们的几何平均数。 思考:类比基本不等式,是否存在:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时,等号成立)呢?试证明。 二、例题分析: 例1:求函数)0(322>+=x x x y 的最小值。 解一: 3322243212311232=??≥++=+=x x x x x x x x y ∴3min 43=y 解二:x x x x x y 623223222 =?≥+=当x x 322=即2123=x 时 ∴633min 324212322 1262==?=y 上述两种做法哪种是错的?错误的原因是什么? 变式训练1 b b a a b a R b a )(1,,-+>∈+求且若的最小值。

由此题,你觉得在利用不等式解决这类题目时关键是要_____________________ 例2 :如下图,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿名着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大? 变式训练2 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值。 由例题,我们应该更牢记 一 ____ 二 _____ 三 ________,三者缺一不可。另外,由不等号的方向也可以知道:积定____________,和定______________。 三、巩固练习 1.函数)0(1232>+=x x x y 的最小值是 ( ) A .6 B .66 C .9 D .12 2.函数2 22)1(164++=x x y 的最小值是____________ 3.函数)20)(2(24<<-=x x x y 的最大值是( ) A .0 B .1 C .2716 D . 2732 4.(2009浙江自选)已知正数z y x ,,满足1=++z y x ,求2 444z y x ++的最小值。 5.(2008,江苏,21)设c b a ,,为正实数,求证:32111333≥+++abc c b a 四、课堂小结: 通过本节学习,要求大家掌握三个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式及求函数的最值,,但是在应用时,应注意定理的适用条件。

立体几何证明方法汇总

E B C D A P ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,42CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面 DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 E A 1 B 1 C 1 D 1D C B A _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证://1O C 面11 AB D . D 1 C 1B 1A 1

相关文档
相关文档 最新文档