文档库 最新最全的文档下载
当前位置:文档库 › 利用待定系数法求函数解析式练习题

利用待定系数法求函数解析式练习题

利用待定系数法求函数解析式练习题
利用待定系数法求函数解析式练习题

20.已知点A (

1, )、B 、O (0,0),试说明A 、O 、B 三点在同一条直线上。

22.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (度)与应付电费y (元)的关系如图所示.分别求出当0≤x ≤50和x >50时,y 与x 的函数关系式;

23.已知一个正比例函数和一个一次函数,它们的图象都经过点P (-2,1),且一次函数图象与y 轴交于点Q (0,3)。

(1)求出这两个函数的解析式;

(2)在同一个坐标系内,分别画出这两个函数的图象。

24..若一次函数的图象与直线y=-3x+2交y 轴于同一点,且过点(2,-6),求此函数解析式

25、某一次函数的图像与直线y=6-x 交于点A(5,k),且与直线y=2x-3无交点,求此函数的解析式.

3)3,1(--

26、已知直线y=kx+b在y轴上的截距为-2,且过点(-2,3).

(1)求函数y的解析式;(2)求直线与x轴交点坐标;(3)x取何值时,y>0;

27、直线x-2y+1=0 在y轴上的截距为______.

28.一次函数y=kx+b(k≠0)的自变量的取值范围是-3≤x≤6相应函数值的范围是-5≤y≤-2,求这个函数的解析式.

29. 一次函数y=kx+b的图象过点(-2,5),并且与y轴相交于点P,直线y=-1/2x+3与y轴相交于点Q,点Q与点P关于x轴对称,求这个一次函数解析式

30、正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5 (1)求△OAB的面积

(2)求这两个函数的解析式

6.一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图象大致为()

8.下面是y=k1x+k2与y=k2x在同一直角坐标系中的大致图象,其中正确的是( )

用待定系数法求函数的解析式教案

运用待定系数法求函数的解析式(教案) 教学目标: 1.了解用待定系数法求函数解析式的一般步骤; 2.掌握用待定系数法求函数的解析式的方法; 3.通过自主、合作学习,培养学生勇于探索、勤于思考的精神. 教学重点:用待定系数法求函数的解析式 教学难点:选设适当形式的函数解析式并用待定系数法求出解析式 教学设计: 一、基础扫描 1.已知一次函数y=kx+3的图像经过两点A(2,-1),则k=__________. 2.已知反比例函数 k y x =的图象经过(1,-2).则k=__. 3.在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).求经过A、B、C三点的抛物线的解析式. 4.抛物线的顶点为(-2,-3),且过点(0,-7),求该抛物线的解析式. 问题1:结合上述四题,说说何为待定系数法?(板书课题) 问题2:谈谈用待定系数法求一次函数、反比例函数、二次函数解析式的一般步骤. 二、课内探究 活动一:一次函数的解析式的确定 1.与直线y=x平行,并且经过点P(1,2)的一次函数解析式为_________. 2.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上. (1)求线段AB所在直线的函数解析式,并写出当02 y ≤≤时,自变量x的 取值范围; (2)将线段AB绕点B逆时针旋转90,得到线段BC,请在图中画出线段 BC.若直线BC的函数解析式为y kx b =+, 则y随x的增大而(填“增大”或“减小”). 活动二:反比例函数解析式的确定 1.如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为() A. 2 y x =B. 2 y x =-C. 1 2 y x =D. 1 2 y x =-

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

专题用待定系数法求二次函数的解析式

精心整理 精心整理 专题1-用待定系数法求二次函数的解析式 二次函数的解析式常见的三种表达形式: 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y=a(x -h)2+k (a ≠0,(h ,k )是抛物线的顶点坐标) 交点式:y=a(x -x 1)(x -x 2)(a ≠0,x 1、x 2是抛物线与x 轴交点的横坐标) 例1.如果二次函数y =ax 2+bx +c 的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式. 求二次4例2x=-1x=-11. 2.3.4.二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。 5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。 7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 8.把二次函数25 3212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的

精心整理 精心整理 解析式。 9.二次函数y=ax 2+bx+c ,当x <6时y 随x 的增大而减小,x >6时y 随x 的增大而增大,其最小值为-12,其图象与x 轴的交点的横坐标是8,求此函数的解析式。 10.已知一个二次函数的图象过(1,5)、(1,1--)、(2,11)三点,求这个二次函数的解析式。 11.已知二次函数图象的顶点为(2,k ),在一次函数y=x+1上,并且点(1,1)在图像上,求此二次函数解析式 12.已知二次函数y=ax 2-2ax+c(a 不为0)的图像与x 轴交于A 、B 两点,A 左B 右,与y 轴正半轴交于点C ,AB=4,OA=OC,求二次函数的解析式 13. 2且x 114.3,0), (1Q 点坐15(1(2)

公开课《求一次函数的解析式》教案

《求一次函数的解析式》教案 谢伟良 教学目标:理解一次函数的概念,理解正比例与一次函数的关系,会求一次函 数的解析式。 教学重点:熟练求解一次函数的解析式 教学难点:利用待定系数法准确求出一次函数的解析式,并会用一次函数关系 式解决生活的实际问题。 教学过程: 一、探究新知 1、在正比例函数 y=kx 中,当x= -2时,y=6,则k 的值是 -3 。 2、若一次函数b x y +=3 2 经过点(9,10) ,则b 的值是 4 ,该一次函数为 43 2+=x y 。 思考: 已知一个一次函数, 当x= -2 时,y= -3;当x= 1 时,y = 3。试问,通过这两个条件你有办法求出这个一次函数的解析式吗? 分析:设一次函数的解析式为 y=kx+b(k ≠0),由“当x=-2时,y=-3”可得关于k 、b 的一个方程 - 2k+b=- 3 ,由“当x=1时,y=3”可得关于k 、b 的又一个方程 k+b=3 ,联立这两个方程可得方程组 {323-=+-=+b k b k ,解得k= 2 ,b= 1 ,把k 、b 返代回一次函数解析式中,从而可得这个一次函数的解析式为y=2x+1 。 今后我们把像这样求函数解析式的方法叫做待定系数法。 二、新知梳理 待定系数法:先设待求的函数表达式(其中含有待定的系数),再根据条件列出方程或方程组,解出待定系数,从而得到所求结果的方法,叫做待定系数法。 待定系数法的步骤:一设、二列、三解、四还原 1. 设一次函数的一般形式y=kx+b(k ≠0); 2. 根据已知条件列出关于k 、b 的二元一次方程组;

3. 解这个方程组,求出k、b; 4. 将已经求出的k、b的值代入解析式. 探究问题一:确定一次函数的表达式 例1、已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5)。 (1)求该一次函数的解析式 (2)当x=5时,函数y的值。 例2、已知一次函数的图象如下图,写出它的函数关系式. 探究问题二:用一次函数解决实际问题: 例3:温度计是利用水银(或酒精)热胀冷缩的原理制作的,温度计中水银(或酒精)柱的高度y(厘米)是温度x(℃)的一次函数。某种型号的实验用水银温度计能测量-20 ℃至100 ℃的温度,已知10 ℃时水银柱高10厘米,50 ℃时水银柱高18厘米。求这个函数的表达式。 例4、(2007甘肃陇南)如下图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题: (1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

函数解析式的求法教案

函数解析式的求法 【教学目标】1.了解函数的表示方法 2.掌握函数解析式的求法 【教学重点】函数解析式的求法 【教学难点】实际问题的函数建模 【例题设置】例1(待定系数法),例2(换元法),例3(解方程组法),例4(抽象 函数),例5(实际问题建模) 【教学过程】 一、要点复习 1.函数的表示法 ⑴ 解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; ⑵ 列表法:就是列出表格来表出两个变量的函数关系; ⑶ 图象法:就是利用函数图象表示两个变量之间的函数关系. 注:一定注意写法,例21x +为代数式,而2 1y x =+才为解析式. 2.函数解析式的求法(求解析式一定不要漏掉定义域) ⑴ 待定系数法:有时题中给出函数的某些特征(如:已知一次函数……),可先设其解析式,再由已知条件确定系数. ⑵ 换元法(一定要注意元的取值范围),对于一些简单的亦可使用“拼凑法”. ⑶ 解方程组法,涉及抽象函数的常用此法. ⑷ 根据实际问题建立一种函数关系式,这种情况须引入合适的变量,根据数学的有关知识找出函数关系式.其重点是找出等量关系. 〖例1〗 二次函数1()y f x =的图象以原点为顶点且过点(1,1),反比例函数2()y f x =的图象与直线y x =的两个交点间距离为8,若12()()()f x f x f x =+,求()f x 的解析式. 解:由二次函数1()y f x =的图象以原点为顶点可设21()(0)f x ax a =≠,再将(1,1)代 入上式解得1a =,故21()f x x = 设2()k f x x =,联立k y x y x ?=???=?解得交点 坐标为,,(,,其距离

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个严重内容,也是高中数学的一个严重基础。熟练地求出二次函数的解析式是解决二次函数问题的严重保证。 二次函数的解析式有三种基本形式: 1、大凡式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式大凡用待定系数法,但要根据例外条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设大凡式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据例外的条件选择适合的解析式形式

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

待定系数法求解析式

待定系数法求函数解析式 【要点梳理】 一.已知三点求抛物线解析式 例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式. 例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标. 二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式. 三.已知两点及对称轴,求抛物线解析式 例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式. 四.已知x轴上两点坐标及另一点坐标求抛物线解析式 例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标. 五.求平移后新抛物线解析式 例6把抛物线2x y- =向左平移1个单位,然后 向上平移3个单位,求平移后新的抛物线解析式. 六.求沿坐标轴翻折后新抛物线解析式 例7 在一张纸上作出函数3 2 2+ - =x x y的图 象,沿x轴把这张纸对折,描出与函数 3 2 2+ - =x x y的图象关于x轴对称的抛物线, 并写出新抛物线解析式. 【课堂操练】 1.求下列条件下的二次函数解析式: (1)过点(-1,0),(0,2)和(4,0). (2)顶点为(2,-3),且过点(-1,15). 2.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于y轴对称的抛物线解析式. 3.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于x轴对称的抛物线解析式. 4.已知二次函数c bx x y+ + =2 2 1 的图象过点A (c,-2),,求证:这 个二次函数图象的对称轴是直线x=3,题目中横线 上方部分是被墨水污染了无法辨认的文字. (1)根据已知和结论中现有信息,你能否求出题 目中的二次函数解析式?若能,请写出解题过程; 若不能,请说明理由. (2)请你根据已有的信息,在原题中的横线上添 加一个适当的条件,把原题补充完整. 【课后巩固】 1.将抛物线2 y x =的图像向右平移3个单位,则 平移后的抛物线的解析式为___________. 2.二次函数3 4 2+ + =x x y的图象可以由二次 函数2x y=的图象平移而得到,下列平移正确的 是() A、先向左平移2个单位长度,再向上平移1个单 位长度 B、先向左平移2个单位长度,再向下平移1个单 位长度 C、先向右平移2个单位长度,再向上平移1个单 位长度 D、先向右平移2个单位长度,再向下平移1个单 位长度 3.已知2 y ax bx c =++的图象过(-2,-6)、 (2,10)和(3,24)三点,求函数解析式. 4.已知函数2 y ax bx c =++,当x=1时,有最 大值-6,且经过点(2,-8),求出此抛物线的 解析式. 5.已知二次函数的图象与x轴的交点横坐标分别 为2和3,与y轴交点的纵坐标是72,求它的解 析式.

2、求一次函数解析式(教案)

求一次函数解析式 一、两直线间的位置关系 (1)两直线平行且 (2)两直线相交 (3)两直线重合且 (4)两直线垂直 二、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式; (2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值; (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。 例题 类型一、待定系数法求解析式 1.一次函数图象经过(3,1),(2,0)两点. (1)求这个一次函数的解析式; (2)求当x=6时,y的值.

2.已知y与x﹣1成正比例,且当x=3时,y=4. (1)求y与x之间的函数表达式; (2)求x=﹣5时y的值. 3.若点P(﹣1,3)在过原点的一条直线上,则这条直线所对应的函数表达式为()A.y=﹣3x B.y=x C.y=3x﹣1D.y=1﹣3x 4.如图,直线AB对应的函数表达式是() A.y=﹣x+2B.y=x+3C.y=﹣x+2D.y=x+2 5.已知y+2与x﹣3成正比例,且当x=0时,y=1,则当y=4时,x的值为. 6.写出同时具备下列两个条件的一次函数表达式.(写出一个即可) (1)y随x的增大而减小;(2)图象经过点(1,0). 7.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式 类型二、一次函数与一次不等式 1.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是() A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣2

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

用待定系数法求数解析式

用待定系数法求数解析式

————————————————————————————————作者:————————————————————————————————日期:

用待定系数法求二次函数解析式 二次函数是初中数学主要内容之一,也是联系高中数学的重要纽带。它是初中《代数》中“函数及其图象”中的难点,求二次函数的解析式又是重点。求二次函数的解析式,要观察题目中给出的条件,灵活选用方法。一般地,有三个点且点不是特殊点时,一般采用一般式;若有三个点,且有二点为函数图像与x 轴交点时,采用交点式;若有顶点时,一般采用顶点式。同时,在采用交点式时,要注意二次项系数a 不能漏掉。应根据题目的特点灵活选用二次函数解析式的形式,运用待定系数法求解。即:根据已知条件列出关于a 、b 、c 或h 、k 及x 1、x 2的方程(注意有几个未知数就列出几个方程);解方程组求出待定的系数;写出解析式,要化为一般式. (1)一般式:y=ax 2+bx+c(a ≠0) ⑵顶点式:y=a(x-h)2+k(a ≠0),(h,k )是抛物线顶点坐标。 (3)交点式:y=a(x-x 1)(x-x 2)(a ≠0),x 1,x 2分别是抛物线与x 轴的两个交点的横坐标. 思路1、已知图象过三点,求二次函数的解析式,一般用它的一般形式: 较方便。 例1 图像过A(0,1),B(1,2),C(2,-1)三点,求这个二次函数的关系式. 解:分析:因为图像过三点,且三个点不属于特殊点。因此,只能采用一般式求解。 设函数解析式为y=ax 2+bx+c ∵抛物线过(0,1),(1,2),(2,-1) c=1 ∴ a+b+c=2 4a+2b+c=-1 解之得a=-2,b=3,c=1; ∴函数解析式为y=-2x 2+3x+1 小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。 思路2、已知顶点坐标,对称轴、最大值或最小值,求二次函数解析式,一般用它的顶点式 较方便。 例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式. 分析 因为这个二次函数的图象的顶点是(8,9),因此,可以设函数关系式为y =a (x -8)2+9. 根据它的图象过点(0,1),容易确定a 的值. 小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。试一试,比较一下。 思路3、已知图象与 轴两交点坐标,可用交点 的形式,其中x 1、x 2, 为抛物线与 轴的交点的横坐标,也是一元二次方程 的两个根。 一般地,函数y =ax 2+bx +c 的图象与x 轴交点的横坐标即为方程ax 2+bx +c =0的解;当二次函数y =ax 2+bx +c 的函数值为0时,相应的自变量的值即为方程ax 2+bx +c =0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x 轴的两个交点坐标时,可选用二次函数的交点式:y =a(x -x 1)(x -x 2),其中x 1 ,x 2 为两交点的横坐标。 例3已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 解 设所求二次函数为,y=a(x+2)(x-4),由于这个函数的图象过(0,3),可以得到a(0+2)×(0-4)=3 解这个方程组,得a= -38 所以: y= -38(x+2)(x-4)= 233 384 x x -++. 所以,所求二次函数的关系式是y= 233 384 x x -++. 思路4、已知图象与 轴两交点间距离 ,求解析式,可用︱x 1-x 2︱2=(x 1+x 2)2 -2x 1x 2的形式来求,其中︱x 1-x 2︱ 为两交点之间的距离, x 1、x 2为图象与 轴相交的交点的横坐标。 4、二次函数的图象与 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 思路5、由已知图象的平移求解析式,一般是把已知图象的解析式写成y=a(x-h)2+k 的形式,若图象向左(右)移动m 个单位,括号里-h 的值就加(减)m 个单位;若图象向上(下)平移 n

第课时用待定系数法求二次函数的解析式教案

第2课时用待定系数法求二次函数的解析式 教学目标 【知识与技能】 利用已知点的坐标用待定系数法求二次函数的解析式. 【过程与方法】 通过介绍二次函数的三点式,顶点式,交点式,结合已知的点,灵活地选择恰当的解析式求法. 【情感态度】 经历用待定系数法求解二次函数解析式的过程,发现二次函数三点式、顶点式与交点式之间的区别及各自的优点,培养学生思维的灵活性. 教学重点 待定系数法求二次函数的解析式. 教学难点 选择恰当的解析式求法. 教学目标 一、情境导入,初步认识 问题我们知道,已知一次函数图象上两个点的坐标,可以用待定系数法求出它的解析式,试问:要求出一个二次函数的表达式,需要几个独立的条件呢? 【教学说明】对于问题,教师应与学生一起交流,明确确定一个一次函数表达式为什么需要两个独立的条件的原因,进而获得确定一个二次函数表达式需要三个独立的条件. 二、思考探究,获取新知 在前面的情境导入中,同学们已经知道确立一个二次函数需要三个条件.事实上,求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a、b、c的值.由已知条件(如二次函数图象上的三个点的坐标)列出关于a、b、c的方程组,并求出a、b、c,就可以写出二次函数表达式. 回顾前面学过的知识,已知学过y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k等几种形式的二次函数,所以在利用待定系数法求二次函数解析式时,一般也可分以下几种情况:

(1)顶点在原点,可设为y=ax2; (2)对称轴是y轴(或顶点在y轴上),可设为y=ax2+k; (3)顶点在x轴上,可设为y=a(x-h)2; (4)抛物线过原点,可设为y=ax2+bx; (5)已知顶点(h,k)时,可设顶点式为y=a(x-h)2+k; (6)已知抛物线上三点时,可设三点式为y=ax2+bx+c; (7)已知抛物线与x轴两交点坐标为(x1,0),(x2,0)时,可设交点式为y=a(x-x1)(x-x2). 【教学说明】教师在教学时,可由浅入深进行讲解.对每一种情形,可先让学生自主思考探索交流想法后,再共同总结出各情况的设法,学生在思考中加深对知识的理解、记忆与掌握. 三、典例精析,掌握新知 例根据下列条件,分别求出对应的二次函数解析式. (1)已知二次函数y=ax2+bx+c的图象过点(1,0),(-5,0),顶点的纵坐标为92,求这个二次函数的解析式. (2)已知二次函数的图象经过(-1,10),(1,4),(2,7); (3)已知二次函数的图象的顶点为(-1,3),且经过点(2,5). 分析: (1)由已知的两点(1,0),(-5,0)的纵坐标知,这两点是关于对称轴对称的两个点,即对称轴为直线x=-2,由此可知顶点坐标为(-2,9/2),可用交点式和顶点式两种方法求解. (2)已知三点坐标,即直接给出了三组对应关系,可通过设三点式用待定系数法求解. (3)由条件初看起来似显不足,因为只给出经过图象上的两点的坐标,但 若注意到顶点坐标实际上存在着两个独立等式,即有 2b a - =-1, 2 4 4 ac b a - =3,因此仍 可求出相应二次函数解析式.这时可利用一般式,代入求值得到结果,也可设这个二次函数解析式为y=a(x-h)2+k,其中h,k可直接由顶点坐标得到,即h=-1,k=3,再把(2,5)代入求出a值,可快速获得该二次函数表达式. 解:(1)方法一:设这个二次函数的解析式为y=a(x-1)(x+5),则

6.方程组法求解析式的三种类型

1 方程组法求函数解析式的三种常见类型 切入点:根据条件关系重新构造一个条件,通过建立方程组,结合消元法进行求解即可. 一、)1()(x f x f 与 型解析式 根据x x 1,互为倒数关系,令x 取x 1 进行整理即可. 例 1.若)(x f 满足) (0,3)1 ()(2≠=+x x x f x f ,求函数)(x f 的解析式. 解:∵)①(0,3)1 ()(2≠=+x x x f x f , ∴将①中的x 用 x 1替换,得x x f x f 3 )()1(2=+ ②, ①×2得:x x f x f 6)1 (2)(4=+ ③ ③-②得x x x f 3 -6)(3=, 得)0(1 -2)(≠=x x x x f ,. 二、)-()(x f x f 与 型解析式 根据x x -,互为相反数关系,令x 取x -进行整理即可. 例2.若)(x f 满足x x f x f 3)()(2=-+,求函数)(x f 的解析式. 解:∵x x f x f 3)()(2=-+,① ∴将①中的x 用x -替换,得x x f x f 3)()-(2-=+ ②, ①×2得:x x f x f 6)-(2)(4=+ ③ ③-②得x x f 9)(3=, 得x x f 3)(=. 三、奇偶函数型解析式 例 3.已知函数)(x f 是奇函数,)(x g 是偶函数,满足 2)()(+=+x x g x f ,求函数)(x f 的解析式. 解:∵2)()(+=+x x g x f ,① ∴2)()(+-=-+-x x g x f , ∵函数)(x f 是奇函数,)(x g 是偶函数, ∴2)()(+-=+-x x g x f ,② ①-②得x x f 2)(2=,则x x f =)(. 练习: 1. 函数)(x f 满足x x f x f 3)1(2)(=+,则)2(f 的值 A. 1 B.1- C. 23- D.2 3 2.函数)(x f 满足x x f x f 3)(2)(=-+,则)2(f 的值 A. 6 B. -6 C. -2 D.2 3.函数)(x f 满足x x f x f 3 )1(2)(-=-+,则)2(f 的值 A.23- B.23 C. 25- D.2 5 4.函数)(x f 满足11 )1(2)(-=-+x x f x f ,则)2(-f 的值 A.181- B.61- C. 181 D.6 1 5. 函数)(x f 满足x x f x f 3)12(2)1 2(=++-,则 )2(-f 的值为

利用待定系数法求函数解析式练习题

20.已知点A( 1,)、B 、O(0,0),试说明A、O、B三点在同一条直线上。 22.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.分别求出当0≤x≤50和x>50时,y与x的函数关系式; 23.已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数图象与y轴交于点Q(0,3)。 (1)求出这两个函数的解析式; (2)在同一个坐标系内,分别画出这两个函数的图象。 24..若一次函数的图象与直线y=-3x+2交y轴于同一点,且过点(2,-6),求此函数解析式25、某一次函数的图像与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,求此函数的解析式. 26、已知直线y=kx+b在y轴上的截距为-2,且过点(-2,3). (1)求函数y的解析式;(2)求直线与x轴交点坐标;(3)x取何值时,y>0; 27、直线x-2y+1=0 在y轴上的截距为______. 28.一次函数y=kx+b(k≠0)的自变量的取值范围是-3≤x≤6相应函数值的范围是-5≤y≤-2,求这个函数的解析式. 29. 一次函数y=kx+b的图象过点(-2,5),并且与y轴相交于点P,直线y=-1/2x+3与y轴相交于点Q,点Q与点P关于x轴对称,求这个一次函数解析式 30、正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5 (1)求△OAB的面积 (2)求这两个函数的解析式 3)3 ,1 (- -

6.一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图象大致为() 8.下面是y=k1x+k2与y=k2x在同一直角坐标系中的大致图象,其中正确的是( )

待定系数法求函数的解析式

一次函数的解析式 1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。 直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --= b:与y 轴交点的刻度( 纵坐标) 1:若点A (2,4)在直线y=kx-2上,则k=( ) A .2 B .3 C .4 D .0 2:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。 3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。 4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( ) A .-2 B .-5 C .2 D .5 5.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( ) A .(0,0) B .(0,1) C .(0,-1) D .(-1,0) 6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( ) A .y <1 B .y <0 C .y >1 D .y <2 7.已知一次函数y=kx+b 的图象如图所示 (1)当x <0时,y 的取值范围是______。 (2)求k ,b 的值.

用待定系数法求二次函数解析式 二次函数的解析式有三种基本形式: 1、一般式:y=ax2+bx+c (a≠0)。 C:与y轴交点刻度(纵坐标) 2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2 ) (a≠0),其中x 1 ,x 2 是抛物线与x轴的交点 的横坐标。 1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式? 2.已知二次函数的图象经过点)4 ,0( ), 5 ,1 (- - -和)1,1(.求这个二次函数的解析式. 3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式? 4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式? 5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式? 6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。求经过A、B、C 三点的抛物线的解析式。

《用待定系数法求一次函数解析式》教案

第3课时用待定系数法求一次函数解析式 1.用待定系数法求一次函数的解析 式;(重点) 2.从题目中获取待定系数法所需要 的两个点的条件.(难点) 一、情境导入 已知弹簧的长度y(厘米)在一定的限 度内是所挂重物质量x(千克)的一次函 数.现已测得不挂重物时弹簧的长度是6 厘米,挂4千克质量的重物时,弹簧的长 度是7.2厘米.求这个一次函数的关系式. 一次函数解析式怎样确定?需要几 个条件? 二、合作探究 探究点:用待定系数法求一次函数解 析式 【类型一】已知两点确定一次函数 解析式 已知一次函数图象经过点A(3, 5)和点B(-4,-9). (1)求此一次函数的解析式; (2)若点C(m,2)是该函数图象上一点, 求C点坐标. 解析:(1)将点A(3,5)和点B(-4,- 9)分别代入一次函数y=kx+b(k≠0),列 出关于k、b的二元一次方程组,通过解 方程组求得k、b的值;(2)将点C的坐标 代入(1)中的一次函数解析式,即可求得m 的值. 解:(1)设一次函数的解析式为y=kx +b(k、b是常数,且k≠0),则 ? ? ?5=3k+b, -9=-4k+b, ∴ ? ? ?k=2, b=-1, ∴一次函 数的解析式为y=2x-1; (2)∵点C(m,2)在y=2x-1上,∴2 =2m-1,∴m= 3 2,∴点C的坐标为( 3 2, 2). 方法总结:解答此题时,要注意一次 函数的一次项系数k≠0这一条件,所以 求出结果要注意检验一下. 【类型二】由函数图象确定一次函 数解析式 如图,一次函数的图象与x轴、 y轴分别相交于A,B两点,如果A点的 坐标为(2,0),且OA=OB,试求一次函 数的解析式. 解析:先求出点B的坐标,再根据待 定系数法即可求得函数解析式. 解:∵OA=OB,A点的坐标为(2,0), ∴点B的坐标为(0,-2).设直线AB的 解析式为y=kx+b(k≠0),则 ? ? ?2k+b=0, b=-2, 解得 ? ? ?k=1, b=-2, ∴一次函数的解析式为y =x-2. 方法总结:本题考查用待定系数法求 函数解析式,解题关键是利用所给条件得 到关键点的坐标,进而求得函数解析式. 【类型三】由三角形的面积确定一 次函数解析式

经典函数解析式求法

求函数定义域的方法 一.已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k ππ+, k ∈z } 例1 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 二. 复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例2 (1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f (x )的定义域为〔a ,b 〕,求f 〔g (x )〕的定义域是解a ≤g (x )≤b ,即得所求的定义域。 (2)是已知f 〔g (x )〕的定义域,求f (x )的定义域。其解法是:已知f 〔g (x )〕的定义域为〔a ,b 〕,求f (x )的定义域的方法为:由a ≤x ≤b ,求g (x )的值域,即得f (x )的定义域。 解:(1)令-2≤X 2—1≤2 得-1≤X 2≤3,即 0≤X 2≤3,从而 x ∴函数y=f (x 2-1)的定义域为〔。 (2)∵y=f (2x+4)的定义域为〔0,1〕,指在y=f (2x+4)中x ∈〔0,1〕,令t=2x+4, x ∈〔0,1〕,则t ∈〔4,6〕,即在f (t )中,t ∈〔4,6〕∴f (x )的定义域为〔4,6〕。 (3)由 -1≤x +1≤2 -1≤X 2—1≤2 得 x ≤1

相关文档
相关文档 最新文档