文档库 最新最全的文档下载
当前位置:文档库 › 初一几何典型例题难题

初一几何典型例题难题

初一几何典型例题难题
初一几何典型例题难题

初一几何典型例题

1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。

PC=PD

证明:作PE⊥OA于点E,PF⊥OB于点F

∵OM是角平分线

∴PE=PF

∠EPF=90°

∵∠CPD=90°

∴∠CPE=∠DPF

∵∠PEC=∠PFD=90°

∴△PCE≌△PDF

∴PC=PD

2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。

AF⊥BE

证明:

∵CD=CE,CA=CB,∠ACD=∠BCE=90°

∴△ACD≌△BCE

∴∠CBE=∠CAD

∵∠CBE+∠BEC=90°

∴∠EAF+∠AEF=90°

∴∠AFE=90°

∴AF⊥BE

3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。

(1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由;

(2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3;

理由:过点P作l1的平行线PQ,

∵l1∥l2,∴l1∥l2∥PQ,

∴∠1=∠4,∠2=∠5.

∵∠4+∠5=∠3,∴∠1+∠2=∠3;

(2)同理:∠1-∠2=∠3或∠2-∠1=∠3.

理由:当点P在下侧时,过点P作l1的平行线PQ,

∵l1∥l2∴l1∥l2∥PQ,

∴∠2=∠4,∠1=∠3+∠4,

∴∠1-∠2=∠3;

当点P在上侧时,同理可得∠2-∠1=∠3.

4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC

解答:延长DE分别交AB、AC于F、G。

由于FB+FD>BD

AF+AG>FG

EG+GC>EC

所以FB+FD+FA+AG+EG+GC>BD+FG+EC

即AB+AC+FD+EG>BD+FD+EG+DE+EC

所以AB+AC>BD+DE+EC

5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。

解:如图,作DF‖AC交AB于F.

∵DF‖AC.等边△ABC.

∴等边△BFD.

∴BF=BD,AB=BC.

∴AF=CD.

又∵∠BFD=∠ECG=60°.

∴∠AFD=∠DCE.

∵∠ADE=60°.

且∠B+∠2=∠ADE+∠1

∴∠1=∠2

又∵∠1=∠2,AF=CD,∠AFD=∠DCE.

∴△AFD≌△DCE(ASA).

∴AD=DE.

又∵AD=DE.∠ADE=60°.

∴△ADE为等边三角形。

6、在正方形ABCD中,E为AB中点,F为AE中点,FC=BC+AF,求证:∠FCD=2∠ECB

解:设边长为4,取AD中点G,连接FG、GC,作GH垂直FC于点H。

第一步:∠GCD=∠ECB 第二步:证明GC是∠FCD的角平分线

△FGC的面积=正方形面积-△BFC面积-△AFG面积-△CDG面积

正方形面积=4x4=16 △BFC面积=3x4/2=6

△AFG面积=1x2/2=1 △CDG面积=2x4/2=4

所以△FGC的面积=5 三角形FGC的面积=FCxGH/2 FC=BC+AF=5 所以GH=2

GH=GD 所以GC是∠FCD的角平分线所以∠FCD=2∠GCD 即∠FCD=2∠ECB

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

初一几何难题练习题集(含答案解析)

1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE =DF 分析:由?ABC 连结CD ,易得CD = 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。

ΘΘAB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中, ΘBE DF B D BC DA BCE DAF SAS E F =∠=∠=??? ? ?∴?∴∠=∠??() 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。 2、证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

初一几何练习题及答案汇编

相交线与平行线 练习题及答案(1) 一、填空题 1. 如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2=_______. 2. 已知直线AB CD ∥,60ABE =∠,20CDE =∠,则BED =∠ 度. 3. 如图,已知AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠1=60°,则∠2=______度. 4. A =70°,∠P =_____. 5. 设a 、b 、c 为平面上三条不同直线, (1) 若//,//a b b c ,则a 与c 的位置关系是_________; (2) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; (3) 若//a b ,b c ⊥,则a 与c 的位置关系是________. 6. 如图,填空: ⑴∵1A ∠=∠(已知) ∴_____________( ) ⑵∵2B ∠=∠(已知) ∴_____________( ) ⑶∵1D ∠=∠(已知) ∴______________( 二、解答题 7. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由. P B M A N 第3题

8.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC 的度数. 9.如图,直线// a b,求证:12 ∠=∠. 10.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系. 解:∠B+∠E=∠BCE 过点C作CF∥AB, 则B ∠=∠____() 又∵AB∥DE,AB∥CF, ∴____________() ∴∠E=∠____() ∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE. 11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE. 12如图,AB∥DE,那么∠B、∠BCD、∠D有什么关系? 13、如图9,直线a∥b,∠1=28°,∠2=50°,则∠3=____。∠3+∠4+∠5=__ _。 14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则() A只能求出其余3个角的度数B只能求出其余5个角的度数 C只能求出其余6个角的度数D只能求出其余7个角的度数 15、如图,已知AB∥CD,EG平分∠FEB,若∠EFG=40°,则∠EGF

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

初一几何典型例题难题

初一几何典型例题 1、如图,/ AOB=90 , 0M 平分/ AOB ,将直角三角尺的顶点P 在射线0M 上移动,两直角分别与 0A , 0B 相较于C , D 两点, 则PC 与PD 相等吗?试说明理由。 PC=PD 证明:作PE 丄0A 于点 V 0M 是角平分线 ??? PE=PF / EPF=90 V/ CPD=90 ???/ CPE= / DPF V/ PEC= / PFD=90 ???△ PCEPDF ??? PC=PD AF 丄 BE 证明: V CD=CE , CA=CB , / ACD= / BCE=90 ???△ ACD 尢 BCE ???/ CBE= / CAD V/ CBE+ / BEC=90 ???/ EAF+ / AEF=90 ???/ AFE=90 ??? AF 丄 BE E , PF 丄0B 于点F D 在BC 上,连接AD 、BE , AD 的延长线交BE 于点F 。试判断AF 与 0 D 2、如图,把两个含有45°角的三角尺按图所示的方式放置, BE 的位置关系。并说明理由。

3、如图,已知直线11 II 12,且13和11、12分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出/ 1、/ 2、/ 3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究/ 1、/ 2、/ 3之间的关系,请画出图形,并说明理由。解:(1)/ 1 + / 2= / 3; 理由:过点P作11的平行线PQ, V 11 // 12, ???11 // 12 / PQ, ? / 1 = / 4,/ 2= / 5. V/ 4+/ 5= / 3,(2)同理:理由:当点? / 1 + / 2= / 3; / 1-/2= / 3 或/2- / 1 = / 3. P在下侧时,过点P作11的平行线PQ, V 11 // 12 ? 11 // 12 / PQ, ?/ 2=/ 4,/ 1= / 3+/ 4, ?/ 1-/2= / 3; 当点P在上侧时,同理可得/ 2- / 1 = / 3 ? 4、D、E是三角形^ ABC内的两点,连接BD、DE、EC,求证AB+AC > BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GOEC 所以FB+FD+FA+AG+EG+GOBD+FG+EC

初一几何题 练习题含答案

1. 已知:如图1 求证:DE =DF 证明:连结CD ΘΘΘAC BC A B ACB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?∴==∠=∠=∠=∠=∠=90,,, ∴?∴= ??ADE CDF DE DF

ΘΘAB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中, ΘBE DF B D BC DA BCE DAF SAS E F =∠=∠=??? ? ?∴?∴∠=∠??() ∴=∠∠ABH NBH 又BH ⊥AH ∴==?∠∠AHB NHB 90 BH =BH ∴?∴==??ABH NBH ASA BA BN AH HN (), 同理,CA =CM ,AK =KM ∴KH 是?AMN 的中位线 ∴KH MN //

即KH 已知:如图 求证:FD ⊥ED 证明一:连结AD ΘΘAB AC BD BAC BD DC BD AD B DAB DAE =∴+==?=∴=∴==,∠∠∠,∠∠∠129090 在?ADE 和?BDF 中, ΘAE BF B DAE AD BD ADE BDF FD ED ===∴?∴∠=∠∴∠+∠=?∴⊥,∠∠,??31 3290 5. 已知:如图6所示在?ABC 中,∠=?B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

() Θ∠=∠=∴?∴∠=∠BAD CAD AO AO AEO AFO SAS ,??42 又∠=?B 60 ∴∠+∠=?∴∠=? ∴∠+∠=?∴∠=∠=∠=∠=? ∴?∴=566016023120123460??FOC DOC AAS FC DC () 即AC AE CD =+ 6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=?EAF 45。 求证:EF =BE +DF 证明:延长CB 至G 在正方形ABCD 中, ∴?∴=∠=∠??ABG ADF AG AF ,13 又∠=?EAF 45 ∴∠+∠=?∴∠+∠=?23452145 即∠GAE =∠FAE ∴=∴=+GE EF EF BE DF 如图8所示,已知?ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

初一上册几何练习题50道

.选择题 1. 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是 (A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D)等腰三角形 2. 下列给出的各组线段中,能构成三角形的是( (A)5 ,12,13 (B)5 ,12,7 (C)8,18,7 (D)3,4,8 3.一个三角形的三边长分别是15,20 和25,则它的最大边上的高为( A)12 B) 10 C) 8 (D) 4. 两条边长分别为2 和8,第三边长是整数的三角形一共有( (A) 3 个(B) 4 个(C)5 个(D)无数个 5.下列图形中,不是轴对称图形的是( (A)线段MN (B)等边三角形C) 直角三角形(D)钝角ZAoB 6.直角三角形两锐角的平分线相交所夹的钝角为( (A)125 (B)135 (C) 1 45 (D) 1 50 8. 如图,下列推理中正确的是( )

7.已知∠α∠β是某两条平行线被第三条直线所截得的同旁内角,若∠α50 ,则∠β为 A.40°B.50° C.130 ° D .14 8. 如图,下列推理中正确的是( )

13.如图3 ,直线AB、CD、EF相交于0,图中对顶角共有() A .若∠1 =Z2 ,贝U AD B C B .若∠1 =Z2 ,贝U AB /DC C .若∠A =∠3 ,贝U A D /BC D .若∠3 = ∠4,贝U AB /DC 9.下列图形中,可以折成长方体的是( 10. 一个几何体的三视图如图所示,那么这个几何体是 12.、如图2 , AB ICD , AC IBC于C,则图中与∠ CAB互余的角有( A. 1个 D- B. 11.如图1 ,在△ABC中,AB = AC ,点D在AC边上,且BD = BC = AD ,则∠A的度数为( A. 30 ° B . 36 ° C . 45 ° D . 70

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A

初中一年级数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD 解:延长 A D到 E,使AD=DE ∵D是 BC中点 A ∴BD=DC 在△ ACD和△ BDE中 AD=DE ∠BDE=∠ADC B C D BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE<AB+BE ∵AB=4 即 4-2<2AD<4+2 1<AD<3 ∴AD=2 2、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2 A 2 1 B E C F D 证明:连 接BF和 EF ∵BC=ED,CF=DF∠, BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S) 第1页 共22 页

∴BF=EF,∠CBF=∠DEF B E 连接 在△ BEF中,BF=EF ∴∠EBF=∠BEF。 ∵∠ABC=∠AED。 ∴∠ABE=∠AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=D,E EF//AB,求证: EF=AC A 2 1 F C D E B 点G C作 CG∥EF交 AD的延长线于 过 CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+B,D求证:∠B=2∠C A 共22 页 第2页

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

初中经典几何证明练习题(含标准答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形 3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN

有关二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布” 问题举例 一.基本概念 1.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件 X=k 发生的概率为:P(X=k)= n N k n M N k M C C C --?,k= 0,1,2,3,,m ; 其中,m = min M,n ,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n M N 2.二项分布

在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为: P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布. 记作:X B(n,p),EX= np 3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件 每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次

试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数. (2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布; (3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.事实上,对于“超几何 分布”中,若p= M N ,则EX= ∑ = - - ? ? n i n N k n M N k M C C C k 1 =

初一上册几何练习题50道

一.选择题 1.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是() (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 2.下列给出的各组线段中,能构成三角形的是() (A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,8 3.一个三角形的三边长分别是15,20和25,则它的最大边上的高为() (A)12(B)10(C)8(D)5 4.两条边长分别为2和8,第三边长是整数的三角形一共有() (A)3个(B)4个(C)5个(D)无数个 5.下列图形中,不是轴对称图形的是() (A)线段MN(B)等边三角形(C)直角三角形(D)钝角∠AOB 6.直角三角形两锐角的平分线相交所夹的钝角为() (A)125°(B)135°(C)145°(D)150° 7.已知∠α,∠β是某两条平行线被第三条直线所截得的同旁角,若∠α=50°,则∠β为() A.40° B.50°C.130°D.140° 8.如图,下列推理中正确的是() A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DC C.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC 9.下列图形中,可以折成长方体的是() 10.一个几何体的三视图如图所示,那么这个几何体是() 11.如图1,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为() A.30°B.36°C.45°D.70° 12.、如图2,AB∥CD,AC⊥BC于C,则图中与∠CAB互余的角有() A.1个B.2个C.3个D.4个

图1 图2 图3 13. 如图3,直线AB、CD、EF相交于O,图中对顶角共有() A.3对B.4对C.5对D.6对 14.下列说法错误的是() A.平面的直线不相交就平行 B.平面三条直线的交点个数有1个或3个 C.若a∥b,b∥c,则a∥c D.平面过一点有且只有一条直线与已知直线垂直 15. 2.设α是等腰三角形的一个底角,则α的取值围是( ) (A)0<α<90°(B)α<90°(C)0<α≤90°(D)0≤α<90° 二.填空题 1.有一个三角形的两边长为3和5,要使这个三角形是直角三角形,它的第三边等于 2.如果三角形的一个外角小于与它相邻的角,那么这个三角形一定是三角形。 3.如图,BO、CO分别是∠ABC和∠ACB的平分线,∠BOC=136°,则∠A= 。 第3题第7题 6.如果等腰三角形的一个外角为80°,那么它的底角为度 7.如图,已知:△ABC中,AB=AC,AB的垂直平分线DE交AC于E,垂足为D,如果∠A=40?,那么∠BEC= ;如果△ABC的周长为35cm,△BEC的周长为20cm,那么底边BC= 。 9. 如图,∠AOC=2∠COB,OD是∠AOB的平分线,已知∠COB=20°,则∠COD=_________。 10.如图,直线AB、CD相交于点O,OE平分∠AOD,FOOD于点O,∠1=40°,则∠2=, ∠4=。 三.计算题 1.如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,,求证:BC∥AE 2. 如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°, 求∠DOE、∠BOE的度数. 3. 如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC. (1)指出图中∠AOD的补角,∠BOE的补角;

相关文档
相关文档 最新文档