文档库 最新最全的文档下载
当前位置:文档库 › Linux内核详细介绍

Linux内核详细介绍

Linux内核详细介绍
Linux内核详细介绍

Linux内核详细介绍

现如今,电脑的使用越来越普遍,几乎每家每户都有电脑,而电脑的操作离不开操作系统,在这里,小编就向大家介绍Linux 内核。

很多Linux 爱好者对内核很感兴趣却无从下手,本文旨在介绍一种解读Linux内核源码的入门方法,而不是讲解Linux复杂的内核机制。

1.核心源程序的文件组织

(1)Linux核心源程序通常都安装在/usr/src/Linux下,而且它有一个非常简单的编号约定:任何偶数的核心(中间数字)如:2.0.30都是一个稳定的发行的核心,而任何奇数的核心如:2.1.42都是一个开发中的核心。

本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。

(2)核心源程序的文件按树形结构进行组织,在源程序树的

最上层你会看到这样一些目录:

arch:arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录;

include:include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与Intel CPU 相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关SCSI设备的头文件目录;

init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点;

Mm:这个目录包括所有独立于CPU 体系结构的内存管理代码,如页式存储管理内存的分配和释放等,而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c;

Kernel:主要的核心代码,此目录下的文件实现了大多数Linux系统的内核函数,其中最重要的文件当属sched.c,同样,和

体系结构相关的代码在arch/*/kernel中;

Drivers:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录,如/block下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()函数。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要使用网络。

其他目录如Lib:放置核心的库代码;Net:核心与网络相关的代码;Ipc:包含核心的进程间通信的代码;Fs:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统,例如fat和ext2、Scripts,此目录包含用于配置核心的脚本文件等。

一般在每个目录下都有一个.depend 文件和一个Makefile 文件,这两个文件都是编译时使用的辅助文件,仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助,而且在有的目录下还有Readme 文件,它是对该目录下的文件的一些说明,同样有利于我们对内核源码的理解。

2.解读实战:为你的内核增加一个系统调用

虽然Linux 的内核源码用树形结构组织得非常合理、科学,

把与功能相关联的文件都放在同一个子目录下,这样使得程序更具可读性。然而,Linux 的内核源码实在是太大而且非常复杂,即便采用了很合理的文件组织方法,在不同目录下的文件之间还是有很多的关联,分析核心的一部分代码通常要查看其他的几个相关的文件,而且可能这些文件还不在同一个子目录下。

下面举一个具体的内核分析实例,希望能通过这个实例,使读者对Linux 的内核组织有些具体的认识,读者从中也可以学到一些对内核的分析方法。

以下即为分析实例:

(1)操作平台

硬件:CPU Intel Pentium II;

软件:Redhat Linux 6.0,内核版本2.2.5

(2)相关内核源代码分析

①系统的引导和初始化:Linux 系统的引导有好几种方式,常见的有Lilo、Loadin引导和Linux的自举引导(bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析。无论是哪种引导方式,最后都要跳转到arch/i386/Kernel/setup.S。setup.S主要是进行实模式下的初始化,为系统进入保护模式做准备。此后,系统执行arch/i386/kernel/head.S (对经压缩后存放的内核要先执行arch/i386/boot/compressed/head.S);head.S 中定义的一段汇编程序setup_idt,它负责建立一张256项的idt表(Interrupt Descriptor T able),此表保存着所有自陷和中断的入口地址,其中包括系统调用总控程序system_call 的入口地址。当然,除此之外,head.S还要做一些其他的初始化工作。

②系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在/usr/src/linux/init/main.c中,它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数void __init trap_init(void) 把各个自陷和中断服务程序的入口地址设置到idt表中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init trap_init(void)函数则通过调用一个宏set_system_gate(SYSCALL_VECTOR,&system_call),把系统调用总控程序的入口挂在中断0x80上。

其中SYSCALL_VECTR是定义在/usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80,而system_call 即为中断总控程序的入口地址,中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中。

③中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法,并根据系统调用向量,使处理机跳转到保存在sys_call_table 表中的相应系统服务例程的入口,从系统服务例程返回后恢复处理机状态退回用户程序。

而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中,sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中,同时在

/usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口。

④由此可见,Linux的系统调用也像DOS系统的int 21h 中断服务,大把0x80中断作为总的入口,然后转到保存在sys_call_table表中的各种中断服务例程的入口地址,提供各种不同的中断服务。

提供上源代码分析可知,要增加一个系统调用就必须在sys_call_table表中增加一项,并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的。

由此可知,在此版Linux内核源程序<2.2.5>中,与系统调用相关的源程序文件就包括以下这些:

* arch/i386/boot/bootsect.S

* rch/i386/Kernel/setup.S

* rch/i386/boot/compressed/head.S

* rch/i386/kernel/head.S

* nit/main.c

* rch/i386/kernel/traps.c

* rch/i386/kernel/entry.S

* rch/i386/kernel/irq.h

* nclude/asm-386/unistd.h

当然,这只是涉及到的几个主要文件。而事实上,增加系统调用真正要修改的文件只有include/asm-386/unistd.h 和arch/i386/kernel/entry.S两个。

(3)源码的修改

①kernel/sys.c中增加系统服务例程如下:

asmlinkage int sys_addtotal(int numdata)

{ int i=0,enddata=0;

while(i<=numdata)

enddata+=i++;

return enddata; }

该函数有一个int 型入口参数numdata ,并返回从0 到numdata 的累加值,然而也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明。

②把smlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中。

arch/i386/kernel/entry.S 中的最后几行源代码修改前为:

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

.rept NR_syscalls-190

.long SYMBOL_NAME(sys_ni_syscall)

.endr

修改后为:

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ .long SYMBOL_NAME(sys_vfork) /* 190 */

/* add by I */

.long SYMBOL_NAME(sys_addtotal)

.rept NR_syscalls-191

.long SYMBOL_NAME(sys_ni_syscall)

.endr

③把增加的sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用。

增加后的部分/usr/src/linux/include/asm-386/unistd.h 文件如下:

#define __NR_sendfile 187

#define __NR_getpmsg 188

#define __NR_putpmsg 189

#define __NR_vfork 190

/* add by I */

#define __NR_addtotal 191

④测试程序(test.c)如下:

#include

#include

_syscall1(int,addtotal,int,num)

main()

{ int i,j;

do

printf(\"Please input a numbern\"); while(scanf(\"%d\",&i)==EOF); if((j=addtotal(i))==-1)

printf(\"Error occurred in syscall-addtotal(),n\");

printf(\"Total from 0 to %d is %d n\",i,j); }

对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才可能被编译通过),运行情况如下:

$gcc .test test.c

$./test

Please input a number

36

Total from 0 to 36 is 666

修改成功后对相关源码进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S 文件中对sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数:

asmlinkage int sys_ni_syscall(void)

{ return -ENOSYS; }

例如第188项和第189项就是如此:

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

而这两项在文件/usr/src/linux/include/asm-386/unistd.h 中却申明如下:

#define __NR_sendfile 187

#define __NR_getpmsg 188 /* some people actually want streams */

#define __NR_putpmsg 189 /* some people actually want streams */

#define __NR_vfork 190

由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括getpmsg,putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用;但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的,所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。

3.结束语

要完全解读庞大复杂的Linux内核,一篇文章远远不能介绍清楚,而且与系统调用相关的代码也只是内核中极其微小的一部分,

重要的是方法,掌握好的分析方法,所以上述分析只是起个引导作用,而真正的分析还有待读者自己的努力。

关于Linux 内核中五个主要子系统的介绍

关于Linux 内核中五个主要子系统的介绍 发布时间:2008.01.02 06:23来源:赛迪网作者:sixth 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

Linux内核中的Kconfig用法与说明

Linux内核中的Kconfig文件 本节不对内核的Kconfig文件进行深入展开,更多Kconfig语法和说明请阅读 。 内核源码树每个目录下都还包含一个Kconfig文件,用于描述所在目录源代码相关的内核配置菜单,各个目录的Kconfig文件构成了一个分布式的内核配置数据库。通过make menuconfig(make xconfig或者make gconfig)命令配置内核的时候,从Kconfig文件读取菜单,配置完毕保存到文件名为.config的内核配置文件中,供Makefile文件在编译内核时使用。 1.1.1 Kconfig基本语法 如程序清单0.1所示代码摘自文件,是一个比较典型的Kconfig 文件片段,包含了Kconfig的基本语法。 程序清单0.1drivers/char/Kconfig片段 menu "Character devices" source "drivers/tty/Kconfig" config DEVKMEM bool "/dev/kmem virtual device support" default y help Say Y here if you want to support the /dev/kmem device. The /dev/kmem device is rarely used, but can be used for certain kind of kernel debugging operations. When in doubt, say "N". …… endmenu 1.子菜单 通过menu和endmenu来定义一个子菜单,程序清单0.1所示代码定义了一个“Character devices”子菜单,子菜单在界面中用“--->”表示,如图0.1所示。 图0.1menu定义的子菜单 子菜单的菜单项则由config来定义,随后的“bool”、“default”、“help”等都是该菜单 项的属性:

Linux内核的配置与编译

Computer Knowledge and Technology 电脑知识 与技术第5卷第3期(2009年1月)Linux 内核的配置与编译 胡庆烈 (佛山职业技术学院电子信息工程系,广东佛山528000) 摘要:Linux 是一种实用性很强的现代操作系统,它开放源代码,并允许用户升级其内核。在Redhat 7.2环境中,详细分析了Linux 2.4.18版本的内核配置、编译及新内核切换等操作过程。 关键词:Linux ;内核;配置;编译 中图分类号:TP316文献标识码:A 文章编号:1009-3044(2009)03-0730-02 Configuration and Compiling of Linux Kernel HU Qing-lie (Department of Electonics &Information,Foshan Polytechnic College,Foshan 528000,China) Abstract:Linux is a very practical modern operating system,which opens source coding and allows the user to upgrade its kernel.In the environment of Redhat 7.2,the paper analysis the Linux 2.4.18version of kernel configuration,compiling and new kernel process switch -ing,and so on. Key words:Linux;kernel;configuration;compile 1引言 Linux 是一个自由的多任务操作系统,它以开放源码、对硬件的配置要求低并兼具现代操作系统的优点而得到了迅猛的发展。操作系统的内核是操作系统的核心,它有很多基本的功能,如虚拟内存、多任务、共享库、需求加载、共享的写时拷贝(copy-on-write)、可执行程序和TCP/IP 网络功能等。 用户编译配置Linux 的内核,主要有以下三个原因:1)从现有内核中去除一些不需要的功能,使自定制的内核运行速度更快、更稳定,且具有更少的代码;2)使系统拥有更多的内存,内核部分将不会被交换到虚拟内存中;3)为了提高速度,将某种功能编译到内核中。 2Linux 内核升级的准备 2.1安装一个Linux 操作系统 在编译一个新的Linux 内核之前,首先应在微机中安装一个Linux 操作系统,以便利用该Linux 环境进行新内核的配置和安装。这里是以Redhat 7.2为例,在安装Redhat 7.2的过程中,有两个问题需要注意: 1)硬盘的分区:由于每个硬盘只能拥有4个主分区(Primary Partition ),故用户需要扩展分区,则至少需要腾出一个主分区来划分逻辑分区。在安装Linux 操作系统时,至少需要两个分区,其中本机分区(Linux Native )是供Linux 存放系统文件,而置换分区(Linux Swap )是用作虚拟内存的存取空间。此外,为了和Windows 系统进行文件的复制转换,还应创建一个FAT32类型的分区。 2)安装LILO 启动程序:LILO 是Linux 的核心加载程序,它提供了从DOS 环境启动Linux 的功能,并支持多重启动菜单,让用户选择启动哪一个分区的操作系统。 2.2获取新的Linux 内核源代码 安装了Linux 操作系统后,接下来的工作是寻找新内核的源代码。目前,在Internet 上提供Linux 源代码的站点有很多,如https://www.wendangku.net/doc/759669594.html, 就是Linux 内核版本发布的官方网站,用户可以从该站点上获得最新版本的Linux 内核源代码,这里是以linux- 2.4.18版本为例。 2.3对新的Linux 内核源代码包进行解压 由于大部分开放性操作系统的程序都是以压缩文件(tgz 、zip 、gz 与bz2)的形式进行发布,所以从网络上取得这些压缩文件后,都先要解压缩之后才能安装使用。具体过程如下: 1)执行“GNOME Terminal ”,把X Windows System 图形用户界面切换至文件操作模式; 2)执行“#cp /root/linux-2.4.18.tar.gz /usr/src ”,把从网络下载的压缩包复制至/usr/src 处; 3)执行“#tar -zxvf linux-2.4.18.tar.gz ”,对压缩包进行解压,解压文件存放在/usr/src/linux-2.4.18目录中。 2.4清除不正确文件及其它从属文件 为了确保源代码目录中没有不正确的文件和其它从属文件,一般需要运行mrproper 命令进行清理,具体操作如下: #cd /usr/src/linux-2.4.18 #make mrproper 如果是使用刚下载的完整的源程序包进行编译,则可以省略mrproper 操作。但若已反复多次使用这些源程序来进行内核编译的,则应要先运行一下这个命令。 收稿日期:2008-12-11 作者简介:胡庆烈(1969-),男,揭阳惠来人,电子助理工程师,主要从事电子技术的教研工作。 ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.5,No.3,January 2009,pp.730-731,735E-mail:kfyj@https://www.wendangku.net/doc/759669594.html, https://www.wendangku.net/doc/759669594.html, Tel:+86-551-56909635690964

linux内核编程规范

竭诚为您提供优质文档/双击可除 linux内核编程规范 篇一:00-linux系统编程常识-王保明 linux系统编程-应用编程常识--专题讲座 writtenby王保明 计算机系统组成 1计算机系统硬件组成 2操作系统 篇二:linux2.6驱动开发系列教程 [置顶]linux2.6驱动开发系列教程 这段时间一直在做android下的驱动,android驱动底层跟linux如出一辙,所以这里准备做一个专题,把linux 驱动做一个总结,为android接下来的驱动开发打好基础,大致的思想如下: 一、linux驱动基础开发 0、 1、 2、 3、

4、linux驱动基础开发4——linux字符驱动模型(memdriver内存读写) 5、linux驱动基础开发5——linux设备文件注册(devfs、mdev、sys、proc)讲解 6、linux驱动基础开发6——linuxgpio驱动实例分析(s3c2440/6410io操作) 7、linux驱动基础开发7——linux1*3io键盘驱动实例分析 8、linux驱动基础开发8——linux中断机制讲解与实 例分析(s3c2440/6410外部中断机制) 9、linux驱动基础开发9——linux数据缓冲机制(kfifo)讲解与实例分析 10、linux驱动基础开发10——linux并发、同步、互 斥机制(信号量、互斥锁、等待任务队列)讲解与实例分析 11、linux驱动基础开发11——linux周期性事件(内 核定时器)讲解 12、linux驱动基础开发12——linux周期性事件(内 核线程)讲解 13、linux驱动基础开发13——linux任务阻塞 (select\poll)机制讲解 14、linux驱动基础开发14——linux异常处理(内核 信号)讲解

基于Linux内核定制X86平台的微操作系统(很完整详尽文章)

基于Linux内核定制X86平台的微操作系统摘要:1 0 前言2 0.1 Linux系统简介2 0.2 Linux的基本思想2 0.3 Linux内核2 0.4 Linux内核版本命名3 0.5 Linux文件系统3 0.6Linux内核引导4 0.7Linux系统组成4 1 平台的搭建4 1.1 硬件平台4 1.2 软件平台4 1.2.1 Ubuntu系统的下载4 1.2.2 Ubuntu系统的安装4 1.2.3 Ubuntu系统的配置4 2 Linux内核的编译5 2.1 内核的下载5 2.2 内核的定制5 2.3 内核的编译5 2.4 内核的制作6 3 BusyBox的编译6 3.1 BusyBox的下载6 3.2 BusyBox的配置6 3.3 BusyBox的编译7 4 Linux文件系统的制作7 4.1 文件系统的制作7 4.2 文件系统的配置9 4.3 文件系统的压缩7 5 Linux引导程序配置10 5.1 ISOLINUX的下载10 5.2 ISOLINUX的配置10 6 LinuxCD-ROM的制作10 7 Linux定制系统的运行11 7.1 VirtualBox下的运行11 7.2 U盘引导在X86平台下的运行12 8定制系统过程中的问题12 8.1 平台搭建中的问题12 8.2 内核编译中的问题12

8.3 BusyBox编译中的问题12 8.4 文件系统制作中的问题12 8.5 引导程序制作中的问题12 8.6 CD-ROM制作中的问题13 8.7 定制系统运行的问题13 参考13 基于Linux内核定制X86平台的微操作系统 王林强 (河南大学物理与电子学院通信专业,河南开封,475004) 摘要: Linux是一种自由和开放,用C语言和汇编语言写成,并符合POSIX标准的类Unix操作系统。并且由于其可定制、可裁剪的特性,不仅在桌面操作系统中有重要的地位,而且在手机、平板电脑、路由器和视频游戏控制台等嵌入式设备有其巨大的优势。 为了更好、更深入的了解及掌握Linux系统。本文详细的讲述并实践,如何从Linux内核源码,经过定制、裁剪、编译、制作文件系统、内核引导,iso光盘制作到最终完整的基于Linux内核定制的微操作系统。 通过基于Linux内核定制的微操作系统的制作,深入的理解Linux内核的工作原理、文件系统结构、内核引导等,从而精通嵌入式开发。 关键词: Linux;定制;嵌入式;微系统 An implementation of micro-operating system based on the x86 platform Linux kernel customization Wang Lin-qiang (School of Physics and Electronics, Henan University, Henan Kaifeng 475004, China) Abstract: Linux is a free and open, and POSIX-compliant Unix-like operating system written in C and assembly language. And can be cut because of its customizable features, not only in the desktop o perating system in an important position, and its huge advantage in the embedded devices, mobile phones, tablet PCs, routers, and video game consoles. In order to better and deeper understanding of and master Linux system. This article tells in d etail and practice, from the Linux kernel source code has been customized, cutting, compiling, pro

Linux内核的一些函数--总结笔记

Linux内核的一些函数 1、MKDEV(ma, mi) 构造设备号,将主设备号和次设备号转换为设备号类型(dev_t)。MKDEV宏将主设备号(ma)左移20位,然后与次设备号(mi)相与,得到设备号。 dev_t结构 主设备号12位次设备号20位 2、int register_chrdev_region(dev_t from, unsigned count, const char *name) 静态分配设备号,成功时返回0;错误时返回一个负的错误码,并且不能为字符设备分配设备号。 from是要分配的设备号范围的起始值,一般只提供from的主设备号,次设备号通常被设置为0。count是需要申请的连续设备号的个数。name是和该范围编号有关的设备名称,该名称不能超过64字节。 3、void unregister_chrdev_region(dev_t from, unsigned count) 释放申请的设备号。from表示要释放的设备号,count表示从from开始要释放的设备号个数。通常,在模块卸载函数中调用unregister_chrdev_region()函数。4、static inline void *kmalloc(size_t size, gfp_t flags) 在物理内存中为程序分配一个连续的存储空间。这个存储空间的数据不会被清零,也就是保存内存中原有的数据。 size表示分配内存的大小,flags是分配标志,可以通过这个标志控制kmalloc()函数的多种分配方式。常用的两种分配标志GFP_KERNEL,GFP_ATOMIC。GFP_KERNEL:内存分配时最常用的方法。当内存不足时,可能会引起休眠;GFP_ATOMIC:在不允许睡眠的进程中使用,不会引起睡眠。 5、void cdev_init(struct cdev *cdev, struct file_operations *fops) 静态初始化cdev设备。将设备结构体与file_operations指针相关联。事例如下:cdev_init(&my_cdev->cdev, &dsp2arm_fops); // 初始化cedv设备 my_cdev->cdev.owner = THIS_MODULE; // 使驱动程序属于该模块 my_cdev->cdev.ops = &dap2arm_fops; // cdev连接file_operations指针 6、int cdev_add(struct cdev *p, dev_t dev, unsigned count)

Linux内核源码分析方法

Linux内核源码分析方法 一、内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内。如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码。通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一般短期内无法了解到的信息。Linux内核由无数开源社区的“大神们”精心维护,这些人都可以称得上一顶一的代码高手。透过阅读Linux 内核代码的方式,我们学习到的不光是内核相关的知识,在我看来更具价值的是学习和体会它们的编程技巧以及对计算机的理解。 我也是通过一个项目接触了Linux内核源码的分析,从源码的分析工作中,我受益颇多。除了获取相关的内核知识外,也改变了我对内核代码的过往认知: 1.内核源码的分析并非“高不可攀”。内核源码分析的难度不在于源码本身,而在于如何使用更合适的分析代码的方式和手段。内核的庞大致使我们不能按照分析一般的demo程序那样从主函数开始按部就班的分析,我们需要一种从中间介入的手段对内核源码“各个击破”。这种“按需索取”的方式使得我们可以把握源码的主线,而非过度纠结于具体的细节。 2.内核的设计是优美的。内核的地位的特殊性决定着内核的执行效率必须足够高才可以响应目前计算机应用的实时性要求,为此Linux内核使用C语言和汇编的混合编程。但是我们都 知道软件执行效率和软件的可维护性很多情况下是背道而驰的。如何在保证内核高效的前提下提高内核的可维护性,这需要依赖于内核中那些“优美”的设计。 3.神奇的编程技巧。在一般的应用软件设计领域,编码的地位可能不被过度的重视,因为开发者更注重软件的良好设计,而编码仅仅是实现手段问题——就像拿斧子劈柴一样,不用太多的思考。但是这在内核中并不成立,好的编码设计带来的不光是可维护性的提高,甚至是代码性能的提升。 每个人对内核的了理解都会有所不同,随着我们对内核理解的不断加深,对其设计和实现的思想会有更多的思考和体会。因此本文更期望于引导更多徘徊在Linux内核大门之外的人进入Linux的世界,去亲自体会内核的神奇与伟大。而我也并非内核源码方面的专家,这么做也只是希望分享我自己的分析源码的经验和心得,为那些需要的人提供参考和帮助,说的“冠冕堂皇”一点,也算是为计算机这个行业,尤其是在操作系统内核方面贡献自己的一份绵薄之力。闲话少叙(已经罗嗦了很多了,囧~),下面我就来分享一下自己的Linix内核源码分析方法。 二、内核源码难不难? 从本质上讲,分析Linux内核代码和看别人的代码没有什么两样,因为摆在你面前的一般都不是你自己写出来的代码。我们先举一个简单的例子,一个陌生人随便给你一个程序,并要你看完源码后讲解一下程序的功能的设计,我想很多自我感觉编程能力还可以的人肯定觉得这没什么,只要我耐心的把他的代码从头到尾看完,肯定能找到答案,并且事实确实是如此。那么现在换一个假设,如果这个人是Linus,给你的就是Linux内核的一个模块的代码,你还会觉得依然那么 轻松吗?不少人可能会有所犹豫。同样是陌生人(Linus要是认识你的话当然不算,呵呵~)给 你的代码,为什么给我们的感觉大相径庭呢?我觉得有以下原因:

学习嵌入式linux的某位大虾的经历,很有用

我们应该怎么学习嵌入式linux呢?? 这是我的一点点个人愚见,望见谅!!!!! 1、学习linux 根据我在论坛的了解,我选择学习嵌入式linux,刚好我们学校也重视嵌入式linux,从实验室到课程安排都是关于嵌入式linux方面,天时地利!这里我把学习linux的经验和教训说说。 可以这样说,在论坛里说道学习linux差不多就学习linux内核。于是我电脑里安装了linux就开始看linux内核方面的书了。我记得来学校以前就买到一本陈莉君的讲linux内核的第一版,现在有第二版了。我就开始看那本说,大家说linux 内核情景分析不错,我就买了上下册,后来又买了《深入理解linux内核》,最后也买了毛德操的《嵌入式系统》也是分析linux内核代码的,主要讲arm相关的。 看内核期间是个非常痛苦的过程,看情景分析有种在森林中找出路,其间我组织了一些同学学习内核,几乎没有几个能

坚持下来的。我认为我是坚持下来了。情景分析在看第一、第二遍是几乎没有摸到门道,我分析有三个方面的原因:1、自己的基础差,这是最关键的。2、内核本身很难。3、没有交流和高人指点。到了第三遍时我才摸到门,才差不多知道个linux的大概脉络,很多细节也是稀里糊涂。 学习linux总结,这里声明一下,我指的嵌入式主要是偏向软件的嵌入式。学习嵌入式的重点和难点关键在操作系统,如果没有掌握操作系统,我认为很难把握一个嵌入式系统。即使在做嵌入式开发中,作应有层的开发几乎可以不知道操作系统也可以开发,我认为那是浮在表面的。很难深入和提高自己的层次。声明:一孔之见!不可深究! 在学习linux内核过程中犯了一个极其严重路线错误:对linux几乎不懂就开始学习内核。我个人推荐一个学习路线是:使用linux—〉linxu系统编程开发---〉驱动开发和分析linux内核。而我差不多相反,实际上你不会使用linux也可以学习内核,但是如果你懂了这些东西学习更有效率。 关于要不要学习内核的问题,我的回答如下:不一定。如果你是喜欢钻研的那你进入内核会满足你的欲望。同时对你以后的嵌入式系统的开发有很好的影响。如果你想从事嵌入式

Linux内核简要介绍(doc 9页)

Linux内核简要介绍(doc 9页)

更多企业学院: 《中小企业管理全能版》183套讲座+89700份资料《总经理、高层管理》49套讲座+16388份资料《中层管理学院》46套讲座+6020份资料《国学智慧、易经》46套讲座 《人力资源学院》56套讲座+27123份资料《各阶段员工培训学院》77套讲座+ 324份资料《员工管理企业学院》67套讲座+ 8720份资料《工厂生产管理学院》52套讲座+ 13920份资料《财务管理学院》53套讲座+ 17945份资料《销售经理学院》56套讲座+ 14350份资料《销售人员培训学院》72套讲座+ 4879份资料

器提供文件传输机制,而用户可以使用任何客户端程序;命令行的客户端和图形化界面的客户端都存在,并且谁都可以为传输文件写一个新的用户界面。 只要涉及到驱动程序,就会运用这样的功能划分。软盘驱动程序是设备无关的——这不仅表现在磁盘是一个连续读写的字节数组上。如何使用设备是应用程序要做的事:tar要连续地写数据,而mkfs则为要安装的设备做准备工作,mcopy 依赖于设备上存在的特殊数据结构。 在写驱动程序时,程序员应该特别留心这样的基本问题:我们要写内核代码访问硬件,但由于不同用户有不同需要,我们不能强迫用户采用什么样的特定策略。设备驱动程序应该仅仅处理硬件,将如何使用硬件的问题留给应用程序。如果在提供获得硬件能力的同时没有增加限制,我们就说驱动程序是灵活的。不过,有时必须要作一些策略决策。 可以从不同侧面来看你的驱动程序:它是位于应用层和实际设备之间的软件。驱动程序的程序员可以选择这个设备应该怎样实现:不同的驱动程序可以提供不同的能力,甚至相同的设备也可以

基于Linux内核的键盘模拟实现

基于Linux内核的键盘模拟实现 摘摘要:当前,由于Linux资源完全公开,使得Linux 的发展日益广泛快速。基于Linux的各种应用已逐渐深入日常生活的方方面面,尤其是在嵌入式领域,由于内核可裁减定制,因此可随意地根据用户需求进行整个系统的定制与重构。其中,我们可以通过对各种标准外部设备的驱动进行改造,从而实现用户对标准设备的特定需求,例如可以通过对键盘的模拟来实现操作的自动化,从而可以避免重复的键盘操作。 关键词:系统调用勾子函数键盘模拟 1Linux内核支持的外部调用接口 由于Linux内核作为系统最深层次的核心,因此外部的开发人员并不能直接对内核进行操作。然而在一些应用程序的开发过程中,又不得不使用内核的某些功能,因此就提供了一些外部接口供开发人员直接与底层内核打交道。 1.1中断 在Linux 下,硬件中断叫做IRQ(Interrupt Requests)。有两种IRQ,短类型和长类型。短IRQ需要很短的时间,在此

期间机器的其他部分被锁定,而且没有其他中断被处理。一个长IRQ需要较长的时间,在此期间可能发生其他中断(但不是发自同一个设备)。如果可能的话,最好把一个中段声明为长类型。如果CPU接到一个中断,它就会停止一切工作(除非它正在处理一个更重要的中断,在这种情况下要等到更重要的中断处理结束后才会处理这个中断),把相关的参数存储到栈里,然后调用中断处理程序。这意味着在中断处理程序本身中有些事情是不允许的,因为这时系统处在一个未知状态。解决这个问题的方法是让中断处理程序做需要马上做的事,通常是从硬件读取信息或给硬件发送信息,然后把对新信息的处理调度到以后去做。 实现的方法是在接到相关的IRQ(在Intel平台上有16个IRQ)时调用中断处理程序。这个函数接到IRQ号码、函数名、标志、一个/proc/interrupts的名字和传给中断处理程序的一个参数。标志中可以包括SA_SHIRQ来表明你希望和其他处理程序共享此IRQ(通常很多设备公用一个IRQ),或者一个SA_INTERRUPT表明这是一个紧急中断。这个函数仅在此IRQ 没有其他处理程序或需要共享所有处理程序时才会成功运行。 1.2系统调用 系统调用发生在用户进程,通过一些特殊的函数来请求

Linux内核网络协议栈笔记

Linux内核网络协议栈笔记 2011-08-11 15:54:https://www.wendangku.net/doc/759669594.html,-微型葡萄-点击数:1641 Linux内核网络协议栈笔记0:序言(附参考书籍) 自己是研究网络的,但实际上对Linux中网络协议栈的实现知之甚少。最近看完《深入理解Linux内核》前几章之后(特别是与网络子系统密切相关的软中断),觉得可以而且应该看一下网络协议栈了。这部分网上的文章大部分都没有什么结构和思路,很少有能够条分缕析的把协议栈讲述明白的。当然,个人水平有限,还是希望朋友们能够批评指正。 参考书籍《Understanding Linux Network Internals》以及《The Linux Networking Architecture Design and Implementation of Network Protocols in the Linux Kernel》,在我的Skydrive里(点这里)可以下到英文chm版。 先大体说说这两本巨著吧。前者确实是一本关于internals的书,前三个part:General Background/System Initialization/Transmission and Reception以及第5个part:IPv4比较有用,而且思路 也与本文所采用的吻合:从系统初始化到数据包的发送与接收。而后者也确实是一本architecture的书,采用了与TCP/IP协议栈(不是OSI 7层)一样的5层架构自底向上讲述了Linux内核的相关内容。 全系列文章都基于Linux内核2.6.11版本,如果最新版本(当前是2.6.30)有较大变化,也会给与标出。 Linux内核网络协议栈笔记1:协议栈分层/层次结构 大家都知道TCP/IP协议栈现在是世界上最流行的网络协议栈,恐怕它的普及的最重要的原因就是其清晰的层次结构以及清晰定义的原语和接口。不仅使得上层应用开发者可以无需关心下层架构或者内部 机制,从而相对透明的操作网络。这个明显的层次结构也可以在Linux内核的网络协议栈中观察到。 主要的参考文献是:Linux网络栈剖析(中文版)/Anatomy of Linux networking stack(英文原版)by Tim Jones. 以及:Linux内核2.4.x的网络接口结构 另外一些参考资料可以从这个页面找到:https://www.wendangku.net/doc/759669594.html,/elibrary/linux/network/(纽约州 立大学石溪分校的页面) Linux内核网络协议栈采用了如下的层次结构:

LINUX2.6内核代码分析――进程管理

摘要:随着计算机开发以及教学工作的深入,大家也不可避免的要接触到基于linux内核的各种操作系统。如何迈入linux的大门,并充分利用linux开源、灵活等特性呢?解读内核源码无疑是理解并掌握linux的关键。本篇文章,主要是对linux内核进程管理部分进行笼统的解读,帮助读者快速掌握linux进程管理的主线,对读者的理解起到抛砖引玉的作用。 关键词:linux2.6;内核代码;进程管理 一 linux是最受欢迎的自由电脑操作系统内核。它是一个用c语言写成,符合posix标准的类unix操作系统。linux最早是由芬兰黑客 linus torvalds为尝试在英特尔x86架构上提供自由免费的类unix操作系统而开发的。技术上说linux是一个内核。“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于linux内核的完整操作系统叫作linux操作系统,或是gnu/linux。 linux内核的主要模块(或组件)分以下几个部分:存储管理、cpu和进程管理、文件系统、设备管理和驱动、网络通信,以及系统的初始化(引导)、系统调用等。一般地,可以从linux 内核版本号来区分系统是否是linux稳定版还是测试版。以版本2.4.0为例,2代表主版本号,4代表次版本号,0代表改动较小的末版本号。在版本号中,序号的第二位为偶数的版本表明这是一个可以使用的稳定版本,如2.2.5,而序号的第二位为奇数的版本一般有一些新的东西加入,是个不一定很稳定的测试版本,如2.3.1。这样稳定版本来源于上一个测试版升级版本号,而一个稳定版本发展到完全成熟后就不再发展。本文是针对2.4.0版本内核进行分析。有于篇幅有限阅读前需要读者自行下载相应内核源码。 二 schedule()函数首先对所有进程进行检测,唤醒任何一个已经得到信号的任务。主要是任务数组中的每个进程,检测其报警定时值alarm。若alarmnr_active + expired->nr_active ii.prio_array_t *active, *expired, arrays[2];// 两个子队列 就绪队列根据时间片是否被用完分为了active队列和expired队列。queue是指定优先级进程list的指针,如queue[i]就是priority为 i 的进程的指针。bitmap是一张优先级的位图,或者可以说的位数组,每一位代表了一个优先级(类似uc/os-ii)。 max_prio指的是优先级的数量. 以上是对linux 2.4.0版本内核源码进程管理部分的概括分析,主要用来为linux源码解读做一个引导,起到抛砖引玉的作用。但是由于时间,篇幅等种种原因,无法将全部函数调用以及相关代码一一呈现在读者面前,还望见谅。

《深入理解LINUX内核》阅读笔记全二十章

《深入理解LINUX内核》(Understanding The Linux Kernel)第三版 第一章 - 绪论 第一章是绪论。前三节内容很少,讲的都是一些内核边缘相关的东西,不是真正内核的内容,简单了解就好,不必深究。后三节,“操作系统基本概念”简单描述了几个“使用操作系统”要知道的概念;“Unix文件系统概述”也是从用户的角度讲了几个概念,并没有深入到内核;“Unix内核概述”这一节内容很多,最重要的是它在讲述一些内核的重要概念时引出了很多必须处理的问题,让读者带着疑问到本书的后续章节里去自己探寻答案。 第二章 - 内存寻址 这一章的内容都是很底层的,直接是一些硬件特性或者是内核中处理硬件的一些策略。 内存地址根据其组织特点的不同分为三个层次:逻辑地址(虚拟地址)、线性地址、物理地址。再细一层,有分段和分页两种。对这两种机制,书中分别详细描述了其80X86的硬件特性和Linux内核对应的处理。 其中分页是重点。常规分页机制中,页框是4KB;而扩张分页机制的页框是4MB。Linux 采用了4级分页模型,能适应不同的体系结构。本章还讲述了硬件高速缓存和TLB (Translation Lookaside Buffer),TLB的翻译有很多种:转换后援缓冲器、转换检测缓冲区、旁路转换缓冲、页表缓冲,我觉得直接叫页表缓冲就很好理解了,没有必要纠结于单个单词的意思。 第三章 - 进程 这一章讲进程,但没有涉及任何的算法相关的东西,都是那些跟数据有关的系统调用、函数、数据结构,这跟前一章很像。 进程的静态特性:进程描述符,都是task_struct类型的结构,它的字段包含了与一个进程相关的所有信息。进程描述符是很基础很重要的东西,整个内核都构建在它的基础之上。 进程切换,这一章里“切换”是跟“调度”完全不同的概念。切换只是当进程调度时要做的数据的处理,特别是与进程描述符相关的操作以及硬件上下文、进程上下文相关的数据、字段。 创建进程,最重要的是do_fork()函数和copy_process()函数。 还有最后一节是撤销进程。重点是do_exit()函数和进程删除时的父子进程关系。 第四章 - 中断和异常 中断(interrupt)通常被定义为一个事件,该事件改变处理器执行的指令顺序。 中断分为同步和异步中断,或者称为异常和中断。 第二节中断和异常。中断包括可屏蔽中断和非屏蔽中断,而异常则包括处理器探测异常和编程异常。还讲述了一些关于IRQ线的知识,然后是异常处理程序发送的19种信号。当然,少不了中断描述符表。 第四节“初始化中断描述符表”,在Linux中分为以下几种描述符:中断门、系统门、系统中断门、陷阱门、任务门。 第六节中断处理。这是本章的重点,也是难点。 物理IRQ可以分配给32~238范围内的任何向量。 每个中断向量都有它自己的irq_desc_t描述符。

深入linux内核3.5节

物理内存的管理 3.5.1 伙伴系统的结构 系统中每个物理内存页都对应于一个struct page实例,每个内存域都关联一个struct zone的实例。 order:描述了内存分配的数量单位。order范围0~MAX_ORDER

●第0个链表包含的内存区为单页,第1为2的一次方.......... ●内存区中第1页内的链表元素,可用于将内存区维持在链表中, 所以不必引入新的数据结构来管理,否则这些页不可能在同一内存区。 ●主要优点之一:管理工作较少。 ●备用列表:连接所有内存域和节点。 ●内存分配原则:在首选的内存域或节点无法满足内存分配请求时, 首先尝试同一节点的另一个内存域,接下来再尝试另一个节点,直至满足要求。 3.5.2 避免碎片 1、依据可移动性组织页 上图表示所有的空闲内存和非空闲内存都是连续的,而下面的图不是

连续的,空闲内存最大只有一个页。 ●内核的方法是反碎片。 不可移动页:在内存中有固定位置,不能移动到其他地方。 可回收页:不能直接移动,但可以删除,其内容可以从某些源重新生成。 可移动页:可以随意移动。 ●内核使用反碎片技术,基于将具有相同可移动性的页分组的思●如图所示: ●数据结构:内核定义的迁移类型 ●初始化基于可移动性的分组

在内存子系统初始化期间,memmap_init_zone负责处理内存域的page实例,所有页最初都标记为可移动的! 分配内存时,如果必须“盗取”不同于预定迁移类型的内存区,内核在策略上倾向于“盗取”更大的内存区。 2、虚拟可移动内存域 ●虚拟内存域ZONE_MOV ABLE,必须由管理员显式激活。 ●基本思想:可用的物理内存分为两个内存域,一个用于可移动分 配,一个用于不可移动分配。 ●数据结构: Kernelcore指定用于不可移动分配的内存数量; Movablecore控制用于可移动内存分配的内存数量。 ●物理内存域提取的用于ZONE_MOV ABLE的内存数量必须考虑 下面两种情况: ①用于不可移动分配的内存会平均地分布到所有内存结点。 ②只使用来自最高内存域的内存。在内存较多的32位系统上,通常为ZONE_HIGHMEM,但在64位系统上,将使ZONE_NORMAL 或ZONE_DMA32。

linux内核的移植

基于嵌入式技术linux内核的移植 甄儒钊 (中南民族大学计算机科学学院,智能科学与技术专业,武汉 430074) 摘要在PC端基于ubuntu 12.04通过配置交叉编译环境、安装交叉工具链、设置网络参数、创建tftp 服务器搭建好开发环境,再通过命令行(此处用到的工具为putty)将已有的kernel镜像文件和其配套的设备树文件烧写至开发板(基于arm7体系结构的三星公司生产的cortex系列A9芯片)中,从而实现片上系统的移植,为后续基于嵌入式系统的应用层的开发和外围设备调试等工作做准备。 关键词ubuntu;内核移植;交叉工具链; cortex-A9; tftp;Gcc Transplantation of Linux kernel based on Embedded Technology Ru zhao Zhen (Project of Intelligence Science and Technology, College of Computer Science Technology, South-Central University for Nationalities, Wuhan 430074, China) Abstract Configuring cross compiler environment,network parameter and TFTP server. And installing cross-tool chain by Ubuntu 12.04 In the PC side. Then writing the image files and Flattened Device Tree files by command line into the development board (The chip based on the arm7 architecture and belongs to the Samsung company called cortex-A9) ,in order to achieve the transplantation of the system on chip and prepare for application layer development, debugging of peripheral equipment and so on. Keywords Ubuntu;Kernel porting; Cross tool chain; cortex-A9;tftp;Gcc 科技日新月异,科技无处不在,科技与我们生活紧密相连。以应用为中心,以计算机技术为基础,软硬件可裁剪,能适应众多应用的嵌入式系统,对功耗,可靠性,成本,体积等要求比较严格,因为这些特性,小到手机、智能手表,大到工程机械都离不开嵌入式系统的高效和精准的控制。然而作为嵌入式技术的核心过程之一:内核移植就显得尤为重要。所以此次实验探究了内核移植的详细过程,系统化地了解了主机与目标机互联的机制,对内核源码进行了初步了解,从而使得整个过程更加清晰明了,为嵌入式工程或项目做好充实的准备。 图1 实验用开发板 Fig. 1 Experimental development board

Linux内核中的Makefile文件

Linux内核中的Makefile文件 本节不对内核的Makefile文件进行深入展开,更多语法和说明请阅读 文件。 1.1.1 顶层Makefile 源码目录树顶层Makefile是整个内核源码管理的入口,对整个内核的源码编译起着决定性作用。编译内核时,顶层Makefile会按规则递归历遍内核源码的所有子目录下的Makefile文件,完成各子目录下内核模块的编译。熟悉一下该Makefile,对内核编译等方面会有所帮助。 1.内核版本号 打开顶层Makefile,开头的几行记录了内核源码的版本号,通常如下所示: VERSION = 2 PA TCHLEVEL = 6 SUBLEVEL = 35 EXTRA VERSION =3 说明代码版本为2.6.35.3,编译得到的内核在目标板运行后,输入uname -a命令可以得到印证: # uname -a Linux boy 2.6.35.3-571-gcca29a0-gd431b3d-dirty #22 PREEMPT Tue Oct 27 20:12:33 CST 2015 armv5tejl GNU/Linux 2.编译控制 (1)体系结构 Linux是一个支持众多体系结构的操作系统,在编译过程中需指定体系结构,以与实际平台对应。在顶层Makefile中,通过变量ARCH来指定: ARCH ?= $(SUBARCH) 如果没有在编译命令行中指定ARCH参数,系统将会进行本地编译,通过获取本机信息来自动指定: SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \ -e s/arm.*/arm/ -e s/sa110/arm/ \ -e s/s390x/s390/ -e s/parisc64/parisc/ \ -e s/ppc.*/powerpc/ -e s/mips.*/mips/ \ -e s/sh[234].*/sh/ ) 如果进行ARM嵌入式Linux开发,则必须指定ARCH为arm(注意大小写,须与arch/目录下的arm一致),如: $make ARCH=arm 当然,也可以修改Makefile,将修改为ARCH ?= $(SUBARCH)修改为ARCH = arm,在命令行直接make即可。

相关文档
相关文档 最新文档