文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池反应机理

锂离子电池反应机理

锂离子电池反应机理
锂离子电池反应机理

锂离子电池反应机理

LiCoO2+C LiC6+LixCoO2

1.0 正极构造

LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极

2.0 负极构造

石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极

3.0工作原理

3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。

正极上发生的反应为

LiCoO2=充电=Li1-x CoO2+xLi++xe-(电子)

负极上发生的反应为

6C+xLi++xe=====LixC6

3.2 电池放电过程

放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。

正极放电:Li1-x CoO2+xLi++xe-(电子) =放电= LiCoO2

负极放电:LixC6===6C+xLi++xe

锂离子电池设计原则

一、锂离子含量即容量,正极活性物质的量决定容量。

?LiCoO2+C LiC6+LixCoO2

二、正极过量会析出锂枝晶,易产生安全问题,所以负极比正极稍微过量。

?LiCoO2+C LiC6+LixCoO2+ Li

三、电解液起到运输锂离子的作用,因此实际量必须保证。

四、水分会消耗锂离子,影响容量,同时产生气体造成鼓胀;同时可能和电解质反应,影响电池的循环、平台等,所以锂离子电池不能有水分。

?LiCoO2+C +

LiC6+LixCoO2+LiOH+H2

?LiPF6+ LiF+PF3O+HF

五、隔膜纸起着隔离的作用,一定不能破损,否则正、负极直接短路会带来安全问题。

锂离子电池使用注意事项

一、锂离子电池过充时一方面损坏正极结构,影响寿命;另一方面析出锂枝晶,引起安全问题。

?LiCoO2+C+LiC6+LiyCoO2+ Li

二、锂离子电池短路时产生极大电流可能会伤害人,而且容易引起电池的安全问题。

电池短路瞬间电流:I=U/R=4.2/0.06=700A

人体承受的正常电流:I=U/R=36/800=0.045A

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢

您的配合和支持)

静止式锂电池储能系统安全要求示范文本

静止式锂电池储能系统安全要求示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

静止式锂电池储能系统安全要求示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 锂离子储能大概是什么样的组成和框架,简单介绍一 下。目前典型的锂离子储能单元配置基本都是用18650型 锂离子电池,圆柱型的,它可能是几十个,甚至几百个组 合在一起变成一个电池模块,这个电池模块再加上电池管 理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类, 不是一个非常标准化的分类。从应用规模大小来看,通常 情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系 统的配置大概不大于10个千瓦的范围,当然电池储能是按 照容量来定,这里我们只是简单的粗略来分一下,按照功

率,按照装置和发电功率的大小。 这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

锂离子电池原理(基础篇)

锂离子电池原理及工艺流程 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1)组成电池的电动势高; 2)电化学活性高,即自发进行反应的能力强; 3)重量比容量和体积比容量大; 4)在电解液中的化学稳定性高; 5)具有高的电子导电性; 6)资源丰富,价格便宜。 2、电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1)稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;2)比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1)在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2)离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3)应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4)材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程 一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

静止式锂电池储能系统安全要求详细版

文件编号:GD/FS-7030 (操作规程范本系列) 静止式锂电池储能系统安 全要求详细版 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

静止式锂电池储能系统安全要求详 细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 锂离子储能大概是什么样的组成和框架,简单介绍一下。目前典型的锂离子储能单元配置基本都是用18650型锂离子电池,圆柱型的,它可能是几十个,甚至几百个组合在一起变成一个电池模块,这个电池模块再加上电池管理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类,不是一个非常标准化的分类。从应用规模大小来看,通常情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用

跟系统的配置大概不大于10个千瓦的范围,当然电池储能是按照容量来定,这里我们只是简单的粗略来分一下,按照功率,按照装置和发电功率的大小。 这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

静止式锂电池储能系统安全要求标准范本

操作规程编号:LX-FS-A11799 静止式锂电池储能系统安全要求标 准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

静止式锂电池储能系统安全要求标 准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 锂离子储能大概是什么样的组成和框架,简单介绍一下。目前典型的锂离子储能单元配置基本都是用18650型锂离子电池,圆柱型的,它可能是几十个,甚至几百个组合在一起变成一个电池模块,这个电池模块再加上电池管理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类,不是一个非常标准化的分类。从应用规模大小来看,通常情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

三元锂电池-化成-老化工艺的分析与总结

关于锂电池化成-老化工艺的分析与总结锂离子电池的生产制造,是由一个个工艺步骤严密联络起来的过程。整体来说,锂电池的生产包括极片制造工艺、电池组装工艺以及最后的注液、封口、化成、老化工艺。在这三个阶段的工艺中,每道工序又可分为数道关键工艺,每一步都会对电池最后的性能形成很大的影响。 在极片制造工艺阶段,可细分为浆料制备、浆料涂覆、极片辊压、极片分切、极片干燥五道工艺。在电池组装工艺,又根据电池规格型号的不同,大致分为卷绕、入壳、焊接等工艺。组装完成后的注液工艺又包括注液、封口。最后是电池的化成、老化、分容三步工艺。在电池制作完成后,需要对电池进行初次预激活和稳定化,也就是最后的化成-老化-分容工序。一、化成 关于化成(Pre-formation)的概念,就是对制造出来的锂离子电池进行一次小电流的充放电。在锂电池制作完成后,需要对电池进行小电流的充放电。关于预充电的目的,主要是两个: 1、电池制作完成后,电极材料并不是处在最佳适用状态,或者物理性质不合适(例如颗粒太大,接触不紧密等),或者物相本身不对(例如一些合金机理的金属氧化物负极),需要进行首次充放电对其激活。 2、在锂电池进行第一次充电过程中,Li+从正极活物质中脱出,经过电解液-隔膜-电解液后,嵌入负极石墨材料层间。在此过程中,电子沿着外围电路从正极迁移到负极。此时,由于锂离子嵌入石墨负极电位较低电子会先与电解液反应生成SEI膜和部分气体。

在此过程中会产生部分气体产生同时伴随少量电解液的消耗,有些电池厂家会在此过程后进行电池排气和补液的操作,尤其是对于 LTO电池来说,会产生大量的气体造成电池鼓包厚度超过10%。对于石墨负极来说,产气量较少,不必要进行排气的操作,这是因为在第一次充电过程中产生的SEI 膜阻碍了电子与电解液的进一步反应,不再产生气体。这也就是石墨体系电池不可逆容量的来源,虽然造成了不可逆容量损失,但是也成就了电池的稳定。 二、老化 老化一般就是指电池装配注液完成后第一次充电化成后的放置,可以有常温老化也可有高温老化,两者作用都是使初次充电化成后形成的SEI 膜性质和组成更加稳定,保证电池电化学性能的稳定性。老化的目的主要有三个: 1、电池经过预化成工序后,电池内部石墨负极会形成一定的量的SEI膜,但是这个膜结构紧密且孔隙小,将电池在高温下进行老化,将有助于SEI结构重组,形成宽松多孔的膜。 2、化成后电池的电压处于不稳定的阶段,其电压略高于真实电压,老化的目的就是让其电压更准确稳定。 3、将电池置于高温或常温下一段时间,可以保证电解液能够对极片进行充分的浸润,有利于电池性能的稳定。 电池的化成-老化工艺是必不可少的,在实际生产中根据电池的材料体系和结构体系选择电池充放电工艺,但是电池的化成必须在小电流的条件

锂离子电池保护原理

电 池管理单元及电池保护 基于阻抗跟踪技术的电池管理单元(BMU)会在整个电池使用周期内监控单元阻抗和电压失衡,并有可能检测电池的微小短路(micro-short),防止电池单元造成火灾乃至爆炸。对于锂离子电池包制造商来说,针对电池供电系统构建安全且可靠的产品是至关重要的。电池包中的电池管理电路可以监控锂离子电池的运行状态,包括了电池阻抗、温度、单元电压、充电和放电电流以及充电状态等,以为系统提供详细的剩余运转时间和电池健康状况信息,确保系统作出正确的决策。此外,为了改进电池的安全性能,即使只有一种故障发生,例如过电流、短路、单元和电池包的电压过高、温度过高等,系统也会关闭两个和锂离子电池串联的背靠背(back-to-back)保护MOSFET,将电池单元断开。 锂离子电池安全 过高的工作温度将加速电池的老化,并可能导致锂离子电池包的热失控(thermal run-away) 及爆炸。对于锂离子电池高度活性化的含能材料来说,这一点是备受关注的。大电流的过度充电及短路都有可能造成电池温度的快速上升。锂离子电池过度充电期间,活跃得金属锂沉积在电池的正极,其材料极大的增加了爆炸的危险性,因为锂将有可能与多种材料起反应而爆炸,包括了电解液及阴极材料。例如,锂/碳插层混合物(intercalated compound)与水发生反应,并释放出氢气,氢气有可能被反应放热所引燃。阴极材料,诸如LiCoO2,在温度超过175℃的热失控温度限(4.3V单元电压)时,也将开始与电解液发生反应。 锂离子电池使用很薄的微孔膜(micro-porous film)材料,例如聚烯烃,进行电池正负极的电子隔离,因为此类材料具有卓越的力学性能、化学稳定性以及可接受的价格。聚烯烃的熔点范围较低,为135℃至165℃,使得聚烯烃适用于作为热保险(fuse)材料。随着温度的升高并达到聚合体的熔点,材料的多孔性将失效,其目的是使得锂离子无法在电极之间流动,从而关断电池。同时,热敏陶瓷(PCT)设备以及安全排出口(safety vent)为锂离子电池提供了额外的保护。电池的外壳,一般作为负极接线端,通常为典型的镀镍金属板。在壳体密封的情况下,金属微粒将可能污染电池的内部。随着时间的推移,微粒有可能迁移至隔离器,并使得电池阳极与阴极之间的绝缘层老化。而阳极与阴极之间的微小短路将允许电子肆意的流动,并最终使电池失效。绝大多数情况下,此类失效等同于电池无法供电且功能完全终止。在少数情况下,电池有可能过热、熔断、着火乃至爆炸。这就是近期所报道的电池故障的主要根源,并使得众多的厂商不得不将其产品召回。 电 池管理单元(BMU)以及电池保护 电池材料的不断开发提升了热失控的上限温度。另一方面,虽然电池必须通过严格的UL安全测试,例如UL16?2,但提供正确的充电状态并很好的应对多种有可能出现的电子原件故障仍然是系统设计人员的职责所在。过电压、过电流、短路、过热状态以及外部分立元件的故障都有可能引起电池突变的失效。这就意味着需要采取多重的保护――在同一电池包内具有至少两个独立的保护电路或机制。同时,还希望具备用于检测电池内部微小短路的电子电路以避免电池故障。 图1展示了电池包内电池管理的单元方框图,其组成包括了电量计集成电路(IC)、模拟前端

锂离子电池容量衰减原因分析

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负 极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从 上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充 电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量 为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能 导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并 且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电 解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程 与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性 及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极 表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量 损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极 活性物相对于负极活性物过量的场合,【电源网】 但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。 【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破 坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成

锂离子电池原理和常见异常分析

本文由av1470贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 一, 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极"跳进"电解液里,"爬过"隔膜上弯弯曲曲的小洞, "游泳"到达负极,与早 就跑过来的电子结合在一起. 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过.由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电.电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极"跳进"电解液里,"爬过" 隔膜上弯弯曲曲的小洞,"游泳"到达正极,与早就跑过来的电子结合在一起. 二, 工艺流程 三, 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小. 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊; d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小. 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客户的线路板漏电(指客户加工后送回的电芯) ; d. 客户未按要求点焊(客户加 工后的电芯) ; e. 毛刺; f. 微短路; g. 负极产生枝晶. 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚). 5.成因有以下几点 a. 未化成好(SEI 膜不完整,致密) b. 烘烤温度过高→粘合剂老化→脱料; ; c. 负极比容量低;d. 正极附料多而负极附料少;e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低. 6.爆炸 a. 分容柜有故障(造成过充) b. 隔膜闭合效应差; ; c. 内部短路 7.短路 锂离子电池原理及工艺流程 来源:网络 作者:模型淘宝 发布时间:2007-05-04 锂 离子电池原理及工艺流程 一, 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极"跳进"电解液里,"爬过"隔膜上弯弯曲曲的小洞, "游泳"到达负极,与早 就跑过来的电子结合在一起. 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过.由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电.电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极"跳进"电解液里,"爬过" 隔膜上弯弯曲曲的小洞,"游泳"到达正极,与早就跑过来的电子结合在一起. 二, 工艺流程 三, 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小. 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊; d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小. 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客

锂电池常见理论

一、锂电池与锂离子电池 锂电池的特点 1、具有更高的能量重量比、能量体积比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无 需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; &可以快速充电。锂电池通常可以采用 0.5?1倍容量的电流充电,使充电时间缩短至1?2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 锂离子电池具有以下优点: 1、电压高,单体电池的工作电压高达 3.6-3.9V,是Ni-Cd、Ni-H电池的3倍 2、比能量大,目前能达到的实际比能量为 100-125Wh/kg和240-300Wh/L (2倍于Ni-Cd,1.5倍于Ni-MH ),未来随着技术发展,比能量可高达150Wh/kg和 400 Wh/L 3、循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力. 4、安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为记忆效应”严重束缚电池的使用,但Li-ion根本不存在这方面的问题。 5、自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于 Ni-Cd 的 25-30%, Ni、MH 的 30-35%。

锂电池容量损失分析

锂离子电池容量损失分析 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。一、锂离子电池工作原理锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC )、碳酸乙烯酯(EC )、碳酸二乙酯(DEC )、碳酸二甲酯(DMC )和碳酸甲基乙基酯(EMC )等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6和LiCIO4等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→←放电Li1-xCoO2+xLi ++xe -20 负极:6C +xLi ++xe -充电→←放电LixC6 总的反应为:6C +LiCoO2充电→←放电Li 1-xCoO 2+Li x C 6 充电时,锂离子从LiCoO2中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给C o3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为C o3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V )而继续充电的过程。在过充的情

相关文档
相关文档 最新文档