文档库 最新最全的文档下载
当前位置:文档库 › 工艺管道伴热设计

工艺管道伴热设计

工艺管道伴热设计
工艺管道伴热设计

工艺管道伴热设计

第一节伴热方式及其选用

一、伴热类型

伴管、夹套管和电热带三种类型。

在加热保护管道的周围,如果有蒸汽管路或者有防火、防爆要求的介质,则应采用伴管或夹套管类型。如果加热保护系统周围无蒸汽管路,而且介质没有防火、防爆的要求,可用电热带保护。生产中用得比较多的是蒸汽伴管。

1、装置中的工艺管道常用的伴热介质有下列四种:

(1)热水:适用干在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源;(2)蒸汽:一般用于管内介质的操作温度小于150℃的伴热;

(3)热载体:一般用于管内介质的操作温度大于150 ℃的夹套的伴热系统。常用的热载体有重柴油或馏程大于300℃馏分油,联苯-联苯醚或加氢联三苯等;

(4)电热:电伴热不但适用于蒸汽伴热的各种情况而且适用于热敏性介质管道,能有效地进行温度控制,防止管道温度过热;适用于分散或远离供汽点的管道或设备以及无规则外型的设备(如泵)的伴热。

2、工艺管道伴热方式有四种:

(1) 内伴热管道伴热:伴热管安装在工艺管道(即主管)内部,伴热介质释放出来的热量,全部用于补充主管内介质的热损失;

(2) 外伴热管伴热:伴热管安装在工艺管道外部,伴热管放出的热量,一部补充主管(即被伴热管)内介质的热损失,另一部分通过保温层散失到四周大气中。当伴热所需的传热量较大(主管温度大于150℃)或主管要求有一定的温升时,需要多管伴热,或采用传热系数大的传热胶坭,填充在常规的外伴热管与主管之间,使它们形成一个连续式的热结合,这样的直接传热优于一般靠对流与辐射的传热;

(3) 夹套伴热:夹套伴热管即在工艺管道的外面安装一套管,类似管套式换热器进行伴热;

(4) 电伴热:电伴热带安装在工艺管道外部,利用电阻体发热来补充工艺管道的散热损失。

二、下列管道应采用伴热

1、在环境温度下,需从外部补充管内介质的热损失,以维持输送液体温度的管道。

2、在输送过程中,由于热损失产生凝液而引起腐蚀或影响正常操作的气体管道。

注意:当伴热蒸汽凝结水不回收时,表中最大允许有效伴热长度可延长20%。

五、伴热蒸汽引入及凝结水排出要求:

1、伴热管必须从主蒸汽管或蒸汽分配管顶部引出,并靠近引出处设切断阀,切断阀宜设置在水平管道上。

2、每根伴热管宜单独设疏水阀,不宜与其他伴管合并疏水。

3、伴管疏水阀宜选用本体带过滤器型,否则宜在疏水阀前设置“Y”型过滤器。

4、通过疏水阀后不回收的冷凝水,宜集中引入一汽水分离器内,将废汽高空排放,冷凝水应引至排水沟。

5、为防止蒸汽窜入凝结水管网使系统背压升高,干扰凝结水系统正常运行,疏水阀组不宜设置旁路阀。

6、伴热蒸汽应从高点引入,沿被伴热管由高向低敷设,凝结水应从低点排出,应尽量减少“U”型弯,以防止产生气阻和液阻。

7、在密闭凝结水系统中,凝结水返回管宜顺介质流向45°斜接在凝结水回收总管的顶部。

8、在敞开凝结水系统中,疏水阀排出的凝结水宜采用汽水分离器经冷却后排至下水系统。

9、在3米半径范围内如有三个或三个以上供汽点或排凝点时,则应在该处设蒸汽分配管或冷凝水集合管,并应在分配管或集合管上设置接头。

六、蒸汽外伴热管安装的一般要求

1、被伴管为水平敷设时,伴管应安装在被伴管下方一侧或两侧;被伴管为垂直敷设而伴管等于或多于二根时,宜沿被伴管四周均匀敷设。

2、伴热管经过阀门、管件时,应沿其外形敷设,且宜避免或减少“U”形。

3、当主管要求伴热而支管不要求伴热时,该支管上的第一个切断阀(靠近主管处)应予伴热。

4、被伴热的管道上的取样阀、放气阀、扫线阀和排液阀等均应伴热。

5、伴热管连接应采用焊接。

6、在经过被伴管的阀门、法兰等处可采用法兰或活套连接。(规范GB 50235—97第条“伴热管经过主管法兰时、伴热管应相应设置可拆卸的连接件。”)

7、伴热管可不设低点排液阀。

8、当伴热管在允许伴热长度内出现“袋形”弯时,以米计的累计上升高度,不宜大于蒸汽压力与疏水阀出口压力差值(以MPa计)的40倍。

9、伴管固定点宜采用扎带捆扎固定,不得直接焊在被伴管上。规范GB 50235—97第条规定:弯头部位的伴热管绑扎带不得少于三道,直伴热管绑扎点间距应符合下表的规定。

直伴热管绑扎点间距(mm)

10、对不允许与主管直接接触的伴热管,在伴热管与主管间应有隔离垫。当主管为不锈钢管,伴热管为碳钢管时,隔离垫宜采用氯离子含量不超过50×10-6(50ppm)的石棉垫,并应采用不锈钢丝等不引起渗碳的物质绑扎。

七、伴热管热补偿要求

1、除能自然补偿外,伴管直管段应每隔20~30m设一个补偿器,补偿器可采用“U”型、“Ω”或螺旋缠绕型。

2、伴管随被伴管转弯作自然补偿时,伴管固定点的设置应使被伴管的保温结构不受损坏。

蒸汽夹套管安装的一般要求:

(1) 夹套管的内管应采用无缝钢管,套管可采用无缝钢管或焊制钢管;

(2) 在夹套中与内管连接的零件材质应与内管相同;

(3) 当套管与内管材质不同,而两者热胀差异产生的热应力超过其许用应力时,则可改用同种材质或线膨胀系数相近的材质;

(4) 每节夹套管的管段长度不宜超过6m;夹套管的内管应采用定距板定位;

(5) 夹套管的热补偿计算应符合下列要求:

1) 当套管与内管的温差大或材质不同时,应对夹套管系进行温度应力校核;

2) 夹套管管系热应力按SHJ41-91《石油化工企业管道柔性设计规范》的要求进行计算;

(6) 当夹套管水平敷设要求有坡度时,夹套内介质流向应与坡向一致,蒸汽应由套管上部引入,冷凝水由套管下部排出;供汽管及排凝管应分别设切断阀;

(7) 套管管段间连接处的水平跨越管宜在底部切线方向进出;夹套管法兰处的跨越管应采用法兰连接;

(8) 法兰式夹套管(即内管焊缝隐蔽型夹套管)的内管焊缝应100%探伤;

(9) 每一夹套管伴热系统应单独设置疏水阀。

化工管道伴热线施工工艺

化工管道伴热线施工工艺 ***公司 摘要:化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。由于伴热管管径小,一般在工程后期施工。施工管理及施工往往忽视。 关键词:外伴热管线伴热管作用施工工艺煨制异形保温壳里伴热管质量控制点 1.工程概况 随着国家加大节能减排力度加大,如何更好的节能成为成为企业首要考虑任务。在化工生产企业管道和设备的伴热隔热是主要的节能措施,为了防止生产过程中热量向外散发,管道伴热绝热成为化工装置不可缺少部分。管道伴热的方式很多,在施工单位现场主要接触是外伴热管线。由于伴热管线管径小,现场施工往往不重视,由于伴热管线依附在大管径管道上,伴热管施工质量直接影响整个管道工程的美观程度,影响工程验收。在这方面上须在施工上引起重视。尤其是工程管理者重视。现把在工程一些积累的经验做一介绍。 2.伴热管的作用: 防止管内液体低温下粘度增大,引起管内压力低,增加了动力消耗,起到节能作用,防止管内气体带液冷凝,不同的情况下对管送气的带液都有要求,伴热线可以避免起到安全作用,防止管送液体或浆料凝固导致管线堵塞。严重的有可能管线废弃。起到管道、阀门、设备维护的作用,防冻防凝。伴热是为了保证物料介质能够在管道内顺利传送,需要对管道进行伴热,常用的伴热方式是外伴热,外伴热施工生产、管理及检修都比较方便。伴热管损坏后,可以及时修理,既不影响生产,,又不会出现质量事故。 3.伴热管施工工艺 伴热管的施工,先伴热站预制而后进行主伴热线的施工,工序:伴热站预制→伴热站支架预制→伴热站安装→伴热站与伴热介质主管连接→伴热站到伴热管线连接施工→主管伴热施工→伴热管绑扎→伴热管吹扫和试压→验收交工。 4.施工准备 4.1材料检验

水箱管道伴热方案全解

水箱管道电伴热保温项目 1.采用标准 电伴热管道防冻技术是一种国外应用多年,在我国逐渐普及的成熟的水管道及罐体保温防冻施工工艺。其原理是将自控温发热电缆贴附在管道及罐体外侧通电发热,将热量传导给管道及罐体内液体,配合管道外保温层,补偿并保持管道罐体内液体温度到达设计温度水平。 由于自控温发热电缆的芯带原料是具有正温度系数效应的PTC高分子导电聚合物,其特性是能根据环境温度自我调节发热功率(即温度越高功率越低),能够主动适应伴热主体的温度变化,保持伴热主体稳定地维持在设计温度,并且不会发生过热、烧毁等安全事故。 2.项目简介 项目地点: 水箱数量:共套 水箱规格:水箱300立方需保温; 水箱壁厚:壁厚按照XXmm考虑,顶厚按照XXmm 水箱壁外铺设110mm厚岩棉及镀锌钢板; 水箱内存水,要求水温度不冻高于2℃以上,水箱外部极端低温按照零下20℃考虑; 水箱材质为不锈钢. 3.设计依据 1、《工业设备及管道绝热工程设计规范》(GB50264-97) 2、《工业设备及管道绝热工程施工及验收标准》(GBJ126) 3、《电气装置安装工程施工及验收规范》GB50254-96

4、《管道和设备保温、防结露及电伴热》03S401 5、《伴热设备安装》03D705-1 6、《建筑消防设施设计规范》 7、《安全防范工程规范》 8、《消防安全设计规范》 9、《GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南》 4.设计选型: (1)设计标准及规范 1.项目水平面及立面图 2.设备保温防结露及电伴热设计图集03S401(91-122页) 3.建筑设计防火规范GB 50016-2006 4.GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南。 (2)、发热电缆选型及技术参数 1、现场每根伴热带长度为在100米以内,发热电缆原设计使用长度限制(最大为120米),伴热系统电源电采用就近原则,提供一种发热电缆供参考 低温自控温发热电缆:DBR-P-J发热电缆采用国产PTC原料及外护套技术由河北山依电伴热有限公司生产,15w/米 2、发热电缆回路使用电压为220V±10% 3、发热电缆技术参数:

管道工艺设计资料

工艺用水的分配与输送管道 制药工艺用水的分配与输送在实际的应用过程中,处于十分关键和及其敏感的地位。分配与输送系统因生命科学领域内工艺用水的种类(去离子水、纯化水、注射用水、无菌注射用水及某些生物技术上的应用)繁多,工艺用水的贮存方式的各异,分配输送系统的输送条件(冷或热),输送距离的远近以及不同的制造工艺用水的水质要求和微生物控制水平,差异很大且组成方式的种类很多,而不同的组成方式与微生物控制方法又正是过去研究和了解较少的内容。本章拟围绕上述的不同情况,对工艺用水系统的分配与输送方式作比较全面的介绍。 一、分配输送系统的设计原则 在工艺用水系统的分配输送系统的组成设计中,不仅应考虑到通过循环能够使水在管道中连续不断地流动,而且应该确保能够定期对系统进行清洗,使之恢复到使用前的良好状态,使用经验证明,不断循环的分配输送系统容易维持系统内正常供水中微生物控制水平。在分配输送的设计中,工艺供水泵的设计为能够在完全湍流条件下工作,因为处于湍流冲刷状态的水,由于其流体动力特性的原因,始终使系统管道的内壁表面处于被湍激的水流高速冲刷的状态,能够有效的阻碍管壁上生物薄膜的形成。分配输送水系统的部件和输送管路应该保持适当的倾斜(通常大约为0.1%),并应设计又多个放水点,以便系统在必要时能够完全放空。 如前所述,工艺用水分配输送系统中应设水的贮罐,这样就可以尽可能地完善系统设备的处理能力。当贮水系统不断地供应以满足生产需求时,也需要进行经常性的维护。系统设计和运行管理中都必须认真考虑以下问题: 1、防止系统管壁内生物膜的形成;

2、尽量把水对系统管道或水泵的腐蚀降到最小程度: 3、怎样更有助于在贮罐中消毒,并且保护机械设备的完整性; 4、怎样对包括贮罐与管道内壁表面在内的抛光与钝化处理。即采用内表面平滑的贮罐,而且贮罐的顶端应有喷淋球或喷淋管喷洒洗涤,这样可以使贮罐顶部空隙的部分湿润与贮水的部分保持一致; 5、怎样有助于降低腐蚀,阻止生物膜的形成,还有助于提高进行热消毒和化学消毒时的处理过程的完整性; 6、怎样防止贮罐内部的水被外部空气污染。贮罐需要开口通气以补偿由于水位改变引起的下力变化,应使用一个疏水性的除菌级呼吸过滤器安装在贮罐排气口,以保护贮罐内部贮水的生物完整性。 二、纯化水的分配与输送 纯化水作为制药工艺用水的一种类型的水,其分配输送的特点是冷水输送。从GMP 规范和药典中均可以了解到,纯化水在制药工艺过程中的主要用途是,作为非注射级的化学原料药品的生产用水和肠道制剂的工艺用水,以及非肠道药品生产工艺过程的辅助用水。因此,纯化水的分配和输送系统相对于注射用水系统的要求要低一些。 纯化水的分配输送系统可以采用循环配送或不循环输送。这仍然要取决于具体的药品生产工艺过程对水质和生产时序的安排。当药品生产工艺对纯化水的水质要求不高,或者生产时间不长,用水时间相对集中。此时,可以采用非循环输的直流纯化水系统。如果药品的生产工艺对纯化水的水质要求较高时,特别是用水点分布较宽,用水时间的分布时断时续而且整个工艺用水的时间较长。此时,最好采用循环方式的分配输送系统。

管道伴热讲解学习

管道伴热规定 1 总则 1.1 目的 为统一中国海洋总公司惠州炼油项目管道伴热设计,特编制本规定。 1.2 范围 1.2.1 本规定规定了石油化工工艺管道蒸汽外伴热管设计及安装要求。 1.2.2 本规定适用于中国海洋总公司惠州炼油项目中工艺管道蒸汽外伴热管、夹套管、电伴热的设计。设备和仪表的伴管设计、其他伴热介质的伴管设计也可参照执行。 1.3 规范性文件 本规定适用于工艺装置配管专业的设计,包括装置(单元)布置、管道布置、管道材料和管道应力等方面内容,不适用于给排水专业埋地管道的设计。本规定适用于中国海洋总公司惠州炼油项目中各阶段的配管设计。 10000-SP-STPE-0101 工艺系统一般规定 GB50235-1997 工业金属管道工程施工及验收规范 SH/T3040-2002 石油化工管道伴管和夹套管设计规范 SH/T3041-2002 石油化工管道柔性设计规范 SH3501-2002(2004)石油化工有毒、可燃介质管道工程施工及验收规范(附加一号补充) 2 设计 2.1 技术要求 2.1.1 本规定应作为伴热系统绘制图纸和确定形式的基准。 2.1.2 伴热设计的基本原则应符合10000-SP-STPE-0101的相关规定。 2.1.3 需要考虑伴热的管道参见10000-SP-SIPE-0101的相关规定。 2.1.4 工艺及公用工程管道等需要伴热的管道应在P&ID及管道说明表上标明。 2.1.5 伴热分配站及回收站的压力等级应在引入管和返回管所连接的主管压力等级一致。 2.2 伴热介质 伴热介质可以是蒸汽或热水、和电伴热,伴热介质的选择应符合10000-SP-STPE-0101的相关规定。 2.3 伴热方式 伴热方式可以是蒸汽外伴热管、夹套管、电伴热,伴热方式的选择应符合 10000-SP-STPE-0101的相关规定。

压力管道柔性设计

压力管道柔性设计 柔性分析必须用ASME B31。3进行榇。其分析软件有simflex caesarII 1. 管道的基础条件 包括:介质温度压力管径壁厚材质荷载端点位移等。 2. 管道的计算温度确定 管道的计算温度应根据工艺设计条件及下列要求确定: 1) 对于无隔热层管道:介质温度低于65℃时,取介质温度为计算温度;介质温度等于或高于65℃时,取介质温度的95%为计算温度; 2) 对于有外隔热层管道,除另有计算或经验数据外,应取介质温度为计算温度; 3) 对于夹套管道应取内管或套管介质温度的较高者作为计算温度; 4) 对于外伴热管道应根据具体条件确定计算温度; 5) 对于衬里管道应根据计算或经验数据确定计算温度; 6) 对于安全泄压管道,应取排放时可能出现的最高或最低温度作为计算温度; 7) 进行管道柔性设计时,不仅应考虑正常操作条件下的温度,还应考虑开车、停车、除焦、再生及蒸汽吹扫等工况。 3. 管道安装温度宜取20℃(除另有规定外)。 4. 管道计算压力应取计算温度下对应的操作压力。 5. 管道钢材参数按《石油化工管道柔性设计规范》SH/T3041-2002执行 1) 钢材平均线膨胀系数可参照附录A选取。 2) 钢材弹性模量可参照附录B选取。 3) 计算二次应力范围时,管材的弹性模量应取安装温度下钢材的弹性模量。 6. 管道壁厚计算 1) 内压金属直管的壁厚 根据SH 3059-2001《石油化工管道设计器材选用通则》确定: 当S0< Do /6时,直管的计算壁厚为: S0 = P D0/(2[σ]tΦ+2PY) 直管的选用壁厚为:S = S0 + C 式中S0――直管的计算壁厚,mm; P――设计压力,MPa; D0――直管外径,mm; [σ]t――设计温度下直管材料的许用应力,MPa; Φ――焊缝系数,对无缝钢管,Φ=1;

化工工艺管道安全设计简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 化工工艺管道安全设计简 易版

化工工艺管道安全设计简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 工艺管道是石油化工生产过程中不可缺少 的环节,它像人的血管一样,把各种设备装置 连接沟通起来,形成流动线,将水、蒸汽、气 体及各种流体物料输送到所需要的地方。因 此,对工艺管道进行安全设计十分重要。从消 防安全角度考虑,工艺管道的连接和敷设应符 合以下要求: (1)可燃气体、液化烃、可燃液体的金属管 道除需要采用法兰连接外,均应采用焊接连 接,公称直径等于或小于25mm的上述管道和阀 门采用锥管螺纹连接时,除含氢氟酸等产生缝 隙的腐蚀性介质管道外,应在螺纹处采用密封

焊。 (2)可燃气体、液化烃、可燃液体的管道应架空或沿地面敷设。必须采用管沟敷设时,应采取防止气液在管沟内积聚的措施,并在进、出口装置及厂房处密封隔离,管沟内的污水应经水封井排入生产污水管道。 (3)可燃气体、液化烃、可燃液体的管道不得穿过与其无关的建筑物、构筑物的上方或地下,如必需跨越厂内铁路和道路,其净空高度分别不应小于5.5m和5m;如横穿铁路或道路时,应敷设在管涵或套管内。 (4)跨越铁路、道路及泵房(棚)的工艺管道上,不应设置阀门、法兰、螺纹接头和补偿器等,以免漏料着火,阻断交通和影响机泵正常运转。

02管道系统工艺设计规定

内部设计规定 管道系统工艺设计规定 上海石油化工研究院开发设计部 2010年

目录 1总则 (3) 1.1 目的 (3) 1.2 范围 (3) 2 一般要求 (3) 2.l 流量的考虑 (3) 2.2 综合权衡建设费用和运行费用 (3) 2.3 流速的选择 (3) 2.4 高速流体管道 (3) 3 管道内单相流体流速及压力降控制推荐值 (4) 3.1 管内流速及压力降控制推荐值 (4) 3.2 管道内各种介质常用流速推荐值 (4) 3.3 管道压力降控制 (4) 4 单相流 (11) 4.1 单相液体管道尺寸确定准则 (11) 4.2 单相气体管道尺寸确定准则 (12) 4.3 单相流体管道内径和压力降的通用计算 (13) 4.4 单相流管道尺寸的确定 (18) 5 两相流 (27) 5.1 概述 (27) 5.2 两相流管线管径选择 (27) 5.3 两相流的流型判断 (27) 5.4 侵蚀流速 (30) 5.5 极限质量流速 (30) 5.6 非闪蒸型两相流管道的压力降计算 (31) 5.7 闪蒸型两相流管道的压力降计算 (40)

1总则 1.1 目的 为规范上海石油化工研究院开发设计部工艺包设计项目中有关管道系统的工艺设计而编制。 1.2 范围 1.2.1 本规定规定了石油化工装置中管道系统工艺及工艺系统设计的要求,并提供了一些与管道系统相关的主要设计参数。 1.2.2 本规定适用于石油化工生产装置的工艺系统和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。 2 一般要求 2.l 流量的考虑 管道系统的设计应满足工艺对管道系统的要求,其流通能力应按正常生产条件下介质的最大流量考虑,其最大压力降应不超过工艺允许值,其流速应位于根据介质的特性所确定的安全流速的范围内。 2.2 综合权衡建设费用和运行费用 在设计管道系统时,一般应在允许压力降的前提下尽可能地选用较小管径,特别是在确定合金管管径时更需慎重对待,以节省投资。但是,管径太小则介质流速增高,摩擦阻力增大,增加了机泵的投资和功率消耗,从而增加了操作费用。因此,在确定管径时,应综合权衡投资和操作费用两种因素,取其最佳值。 2.3 流速的选择 不同流体按其性质、状态和操作要求的不同,应选用不同的流速。粘度较高的液体,摩擦阻力较大,应选较低流速。允许压力降较小的管道,例如常压自流管道和输送泡点状态液体的泵入口管道,应选用较低的流速。允许压力降较大或介质粘度较小的管道,应选用较高流速。为了防止因介质流速过高而引起管道冲蚀、磨损、振动和噪声等现象,液体流速一般不宜超过4M/S;气体流速一般不超过其临界速度的85%,真空下最大不超过100M/s;含有固体物质的流体,其流速不应过低,以免固体沉积在管内而堵塞管道,但也不宜太高,以免加速管道的磨损或冲蚀。

化工管道伴热方案规定[]

化工管道伴热设计规定 第一章伴热方式及其选用 石油化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。它的特点是伴热介质取用方便,除某些特殊的热载体外,都是由企业的公用项目系统供给。伴热方式多种多样,适用于输送各种介质及操作条件下的工艺管道。通过几十年的实际运行,证实安全可靠。因为工艺管道内介质的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件,现分析如下。 一、伴热介质 1.热水 热水是一种不常用的伴热介质,适用于在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源。当企业有这一部分余热可以利用,而伴热点布置比较集中是时,可优先使用。有些厂用于原油罐或添加剂罐的加热,前者是为了节省蒸汽利用余热,后者是控制热源介质的温度,防止添加剂分解变质。 2.蒸汽 蒸汽是国内外石油化工企业中广泛采用的一种伴热介质,取用方便,冷凝潜热大,温度易于调节,使用范围广。石油化工企业中蒸汽可分高压、中压及低压三个系统,而用于伴热的是中、低压两个系统,基本上能满足石化企业中工艺管道的使用要求。 3.热载体 当蒸汽<指中、低压蒸汽)温度不能满足工艺要求时,才采用热

载体作为热源。这些热载体在炼油厂中常用的有重柴油或馏程大于300℃馏分油;在石油化工企业中有联苯-联苯醚或加氢联三苯等。 热载体作伴热介质,一般用于管内介质的操作温度大于150℃的夹套伴热系统。 4.电热 电热是一种利用电能为热源的伴热技术。电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。 二、伴热方式 1.内伴热管伴热 伴热管安装在工艺管道<以下也称主管)内部,伴热介质释放出来的热量。全部用于补充主管内介质的热损失。这种结构的特点: <1)热效率高,用蒸汽作为热源时,与外伴热管比较,可以节省15~25%的蒸汽耗量; <2)内伴热管的外侧传热系数h i,与主管内介质的流速、粘度有关;<3)因为它安装在工艺管道内部,所以伴热管的管壁加厚。无缝钢管的自然长度一般为8~13M,伴热管的焊缝又不允许留在工艺管道内部,因此弯管的数量大大增多,施工项目量随之加大。 <4)伴热管的热变形问题应予重视,否则将引起伴热管胀裂事故,既影响产品质量,又要停产检修。 <5)这种结构型式不能用于输送有腐蚀性及热敏性介质的管道。一般很少用于石化企业工艺管道。 2.外伴热管伴热

(整理)蒸汽伴管伴热保温

3.1蒸汽伴管伴热保温 时间:2008-02-26 来源:作者: 3 伴热保温的选用 当隔热不能满足工艺物料的隔热保温要求时,一般采用伴热保温的形式。伴热保温通常有蒸汽伴热、热水伴热、导热油伴热和电热带伴热等。 3.1 蒸汽伴管伴热保温 3.1.1 蒸汽伴管伴热保温适用范围 设备、管道中介质的凝固点、粘度较大,工艺介质需维持的温度较高,或者设备、管道所在区域的防爆等级较高,介质的腐蚀性、热敏性较强时,应选择蒸汽伴热的热保温形式。 3.1.2 热源介质的选用 蒸汽伴热常用饱和蒸汽作热源介质,蒸汽压力通常由蒸汽温度决定,而蒸汽温度根据工艺介质需保温的情况而定,一般情况下蒸汽应高于被保温介质的温度。选用的蒸汽温度应考虑工艺物料的特性,如结焦点、凝固点等。使用蒸汽压力一般等于或低于1300kPa,常用350~1000kPa,最低200kPa。压力太低时,管道阻力造成蒸汽的压力降低会产生冷凝液,因而伴管长度较短,工程上一般不采用低于200kPa压力的伴管蒸汽。蒸汽热源在操作期间及开、停车时不应中断。 3.1.3 蒸汽伴管伴热保温的设计要求 a) 设备伴管伴热保温的设计要求 设备内介质是酸或其他严重腐蚀性的物料时,设备如需伴热保温应采用外部伴热,对于其他物料,可以采用外部伴热,或内部伴热。 工艺系统专业根据化工工艺专业发表的设备工艺数据表中提出的伴热保温的要求对设备的伴热长度、伴管间距进行计算。

b) 管道伴管伴热保温的设计要求 物料管道一般采用外部伴热。工艺系统专业根据化工工艺专业的条件和由管道材料专业提出的伴热保温管道所需伴热管的根数及其他要求,在“管道命名表说明”中写明管子的蒸汽伴热管的根数。 3.1.4 蒸汽伴管伴热保温计算 3.1. 4.1 设备蒸汽伴管伴热保温计算 a) 设备伴热管管径的选择 设备伴管的规格,通常采用DN15~DN25管径的管子,如果需要,也可以采用大一点的管径。 b) 设备伴管伴热经隔热后的热损失计算 1) 保温隔热层表面至周围空气给热系数(α0) α0=αr+αk(3.1-1) 式中 α0——保温隔热层表面至周围空气给热系数,W/(m2·℃); αr——保温隔热层的辐射传热系数,W/(m2·℃); αk——对流传热系数,W/(m2·℃)。 辐射传热系数(αr)

压力管道设计常见问题及难点

第一章任务与职责 1. 道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1) 因应力过大或金属疲劳而引起管道破坏; 2) 管道接头处泄漏; 3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4) 管道的推力或力矩过大引起管道支架破坏; 2. 压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》

8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10)GB 150-2004《钢制压力容器》 3. 专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4. 工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型U型管系可采用图表法进行应力分析 6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置 10) 设置、调整支吊架

某热油管道工艺设计.

重庆科技学院 《管道输送工艺》 课程设计报告 学院:石油与天然气工程学院专业班级:油气储运专业08 学生姓名:马达学号: 2008254745 设计地点(单位)重庆科技学院K栋 设计题目:某热油管道工艺设计 完成日期: 2010 年 12 月 30 日 指导教师评语: ___________________________________________________________________________ ___________________________________________________________________________ ______________ 成绩(五级记分制): 指导教师(签字):

摘要 我国原油大部分都属于高粘高凝固点原油,在原油管道输送过程中一般都采取加热输送,目的是为了使管道中的原油具有流动性同时减少原油输送过程中的摩阻损失。热油管道输送工艺中同样要求满足供需压力平衡,在起伏路段设计管道输油关键因素是泵机组的选择和布置,要在满足热油管道输送压力平衡的条件下尽量使管道输送能力增大。 热油管道工艺设计中要根据具体输送原油的性质、年输量等参数确定加热参数,结合生产实际,由经济流速确定经济管径,设计压力确定所使用管材,加热参数确定热站数。然后计算管道水力情况,按照“热泵合一”原则布置泵站位置,选取泵站型号,并校合各泵进出站压力和沿线的压力分布是否满足要求,并按照实际情况调整泵机组组成。最后计算最小输量,确保热油管道运行过程中流量满足最小流量要求,避免管道低输量运行。 关键词:原油加热输送泵站压力平衡输量

管道柔性分析与应力计算

今天借这个机会和大家共同学习和探讨一下管道柔性分析与应力计算以及应力计算软件CAESARⅡ。 我们作为管道工程师,配管是我们的主要工作,占据了我们大部分工作时间。一般情况下,管道工程师在配管完成后,应将临界管系提给管道机械工程师进行管道柔性分析与应力计算,通常也简称为应力分析。我们在配管完成后,为什么要进行管道应力分析呢? 主要有以下几个原因: 第一个原因是为了使管道应力在规的许用围,保证所设计的管系及其连接部分的安全性。 第二个原因是为了使管口荷载符合标准规的要求。 第三个原因是为了计算支撑和约束的设计荷载。 第四个原因是为了计算管道位移,从而选择合适的管架。 第五个原因是为了解决管道动力学问题,比如说:机械振动,声频振动,流体锤,压力脉动,安全阀的排放等等。 最后一个原因是为了帮助配管优化设计。 这些原因呢也构成了管机工程师需要完成的工作任务,对这些容呢后面我们会作进一步学习。 今天我们学习的容包括以下五个部分: 1.管道应力分析的相关理论和基础知识。我们简单的学习一下与管 道应力分析相关的一些理论和基础知识。 2.管道应力分析的理解和工作任务。 3.实际工作中的管道应力分析的工作过程。

4.管道的柔性设计。 5. CAESARⅡ管道应力计算程序。 我们首先一起学习一下应力分析的理论基础 一管道应力分析的相关理论和基础知识。 应力分析的相关理论和基础知识涉及的容是非常广泛的,象是材料力学,结构力学,有限元,弹塑性力学等等。今天我们只学习和它关系最为密切的一些容。如果有兴趣的话,大家可以在以后时间里进一步学习其他相关知识。 我们学习的第一点是强度理论 在管系上的任一受力点,往往受到多方向应力的作用,例如:轴向应力,环向应力,剪切应力的作用。这些应力会对管道材料的力学性能产生影响,严重时将使管道材料失效或产生破坏。这种影响程度通常用“当量应力强度”来衡量,而定量求解应力强度则要依据相应的强度理论。 涉及的强度理论主要有四种: 第一种是最大主应力理论。最大主应力理论指出材料发生断裂破坏时,其受力横截面上的最大主应力既是最危险的应力。 第二种是最大变形理论。最大变形理论是指材料发生断裂破坏时,最大变形是受力横截面上最危险的情况。 第三种是最大剪切应力理论。最大剪切应力理论是指材料的破坏或性能失效,仅取决于材料所受的最大剪切应力。 第四种是变形能理论。变形能理论是指材料的破坏或性能失效,取决

管道伴热设计

管道伴热设计

21 工艺管道伴热设计 在石油化工企业中的管道,常用伴热方法以维持生产操作及停输期间管内介质的温。确保管道的安全运行,由于工艺管道内的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件。 21.1 .1 伴热介质 (1)热水热水适用于在操作温度不高或不能采用高温伴热的介质的条间下,作为热源。当企业有一部分余热可以利用,且伴热点布置比较集中时,可优先使用。 (2)蒸汽蒸汽是国内外石油化工企业中广泛采

18 页 用的一中伴热介质,取用方便,冷凝潜热大,温度易于调节,适用泛围广。石油化工企业中蒸汽可分为高压、中压及低压三个系统,而用于伴热的是中、低压两个系统,基本上能满足石油化工企业中工艺管道的使用要求。 (3)热载体当蒸汽温度不能满足工艺要求时,可采用热载体作为热源。 (4)电热电热是一种利用电能为热源的伴热技术。电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。 21.1.2 伴热方式 (1) 内伴热管伴热伴热管安装在工艺管道内部,伴热介质释放出来的热量,全部用于补充主管内介质的

18 页 热损失。其结够特点:热效率高,用蒸汽作为热源,于外伴热管比较,可以节省15~25%的蒸汽耗量;但由于伴热管它安装在工艺管道内部,所以伴热管的管壁应加厚。无封钢管的自然长度一般为8~13米,伴热管的焊缝不允许留在工艺管道内部,因此弯管的数量大大增多,施工工程量随之加大,以及伴热管的变形问题和此结够不能用于输送有腐蚀性及热敏性介质的管道。一般很少用于石油化工企业工艺管道。 (2)外伴热管伴热外伴热管是目前国内外石油化工企业普便采用的一种伴热方式,其伴热介质一般有蒸汽和热水两种。伴热管放出的热量,一部分补充主官内介质的热损失,另一部分通过保温层散失到四周大气中。当伴热所需的传热量较大(主管输送温度

工艺管线蒸汽伴热设计

276 在石油开采过程中,石油化工装置中出现介质结晶、冷凝、冻结的情况,以及温度或黏度的变化,这些现象都会对开采质量产生影响。采用工艺管线蒸汽伴热设计可以有效的阻止现象发生。因此国家投入相当力量进行研究,经过实验证实蒸汽伴热技术经过合理的设计,可以起到节省费用、节约能源、提高效率的作用,因此在石油化工产业中广泛应用。 1 伴热管道的伴热方式 伴热方式有外管伴热、内管伴热、夹套伴热和电伴热等。蒸汽伴热相对其它的伴热方式,有着取用方便、潜热大的优点,可以更好降低能源输出,提高生产效率。 石油化工装置中的管道伴热主要是为了防止管道内的介质发生结晶、冻结、凝固等,影响管道内输送,除此外伴热管道可以维持管道内的温度以及粘合度,确保管道内部的介质流通。 2 蒸汽伴热管道设计细节2.1 设计的原理依据 对于伴热管道的设计标准,国家曾出台多项规范法则进行限定,本文进行的蒸汽伴热管道设计是按照《石油化工管道伴管和夹套管设计规范》SH/T30400-2012标准进行的,其中包含详细的设计依据,保证了蒸汽伴热管道正常运行。 2.2 环境温度、伴热介质温度的选择 石油开采过程中,管道的环境以及伴热介质的温度会影响管道内部的运输。控制好温度的范围,有利于管道内物质运输效率的提升。 (1)不同环境选择不同温度 环境温度是根据管道的布置以及整个运行的情况来选择的,内外环境的温度要求不同,一般在已经采取供暖设备的房间,设定环境温度为20℃。室外温度的选择则需要根据具体情况进行分析,按照最不利于管道运输的温度进行设定。一般在对伴热温度的选择是按照过去几年的年平均温度取平均值即可。 (2)与压力密切相关的介质温度 管道蒸汽伴热方式其原理是依靠蒸汽内部的潜热进行伴热活动,所以在对介质温度进行选择时,需要考虑管道内部的压力情况。在石油化工装置中采用的蒸汽伴热方式,一般是蒸汽过热方式。蒸汽的压力有中低两种标准,中压的数据标准为1MPa、1.6MPa、2MPa,低压的蒸汽压力数值为0.6MPa、0.4MPa。根据相关的数据显示,在管线蒸汽伴热的压力一般选择0.4MPa、1MPa、1.6MPa,对应的温度是151℃/183℃/202℃。 3 在现有的基础上对环节进行优化3.1 设计布置蒸汽分配站和疏水站 根据实际情况设计出蒸汽伴热设施的平面布置图,根据图纸中的蒸汽分配站以及疏水站的位置进行设置,站内设置的蒸汽分配站需采用从上到下的顺序,有序的排列,同时尽可能将蒸汽分配站布置在建筑物或是结构框架的上面,这样的分布主要是确保冷凝液能通过高地位的分布,汇总到低位进行回收增加利用率。疏水站和分配站的位置 恰恰相反,是分布在建筑物或者是结构框架的最低位置,以方便管道流通。 3.2 设计疏水站的管道分布 疏水站的疏水阀是用于压力试验的,在蒸汽伴热设备进行正常运作时,疏水阀会定期进行更新运动。在实际的操作中发现,疏水阀清洗起来比较困难,设备遇到故障后修理也不方便。为了改善以上的现况,可以在设备之前添加切断网设置;为了方便污水的处理,应该调整疏水站内的凝结水收集管之间的距离,具体的数值应该为200mm;为了防止管道内的机械杂质进入疏水阀前设置的过滤器,应该尽可能将排污阀和凝结水管分布成同一垂直平面;为了防止疏水网堵塞应该增加排污阀,这样做可以有效的减少杂质污物进入疏水阀中。以上的细节优化可以帮助管道的正常运行。 3.3 设计被伴热管道的分布 在进行被伴热管道分布时需要区分几种情况,分别是集中分布、冬季伴热管道和常年伴热管道的分布、直径在DN50以下的管道分布。针对3种条件下,伴热管道有不同的分布方式,所以在设计时需要考虑周全 (1)以节省能源为前提,在满足工业工艺的情况下,把同介质同工艺的管道进行聚集设计,尽可能缩短管道之间的距离,以此来提高伴热的效果,方便管道的正常工作。 (2)由于气温的差异,冬季和常年的伴热设备需要进行区分。方便在相应的温度阶段进行管道设备之间的切换,确保管道的正常运行。一般在条件允许的情况下,安装两套设备,分别设置相应的运输数据,增加伴热的效率。 (3)伴热管道的直径设置,也将对伴热的效果产生影响。一般在石油化工设备中常用伴热管直径为DN10、DN12、DN15、DN20、DN25,伴热管根数不宜超过4根,原则是“大直径,少根数”,而国外则是“小直径,多根数”,从传热效果看小直径,多根数效果更佳,在工程设计中最好采用统一规格的换热管,同时设置阀门的数量以及管道的合理布控,也将起到事半功倍的效果。 4 结束语 经过实验证实蒸汽伴热技术经过合理的设计,可以起到节省费用、节约能源、提高效率的作用,因此在石油化工产业中广泛应用。按照《石油化工管道伴管和夹套管设计规范》SH/T30400-2012标准进行设计,可以从布置蒸汽分配站和疏水站、疏水站的管道分布、被伴热管道的分布等几个方面进行考虑。 参考文献 [1]李珊珊. 浅谈化工工艺管道的蒸汽伴热设计分析[J]. 山东化工,2014,12:122;128. [2]陈逢春. 化工工艺管道的蒸汽伴热设计[J]. 上海化工,2014,1:22-24. [3]甄崇汀. 工艺管道蒸汽伴热设计要点[J]. 化工设计,2014,6:36-39;1. 工艺管线蒸汽伴热设计 田春 珠海巨涛海洋石油服务有限公司 广东 珠海 519000 摘要:在实际的石油开采过程中,发现石油化工的装置会出现介质结晶、冷凝、冻结的情况发生,同时还伴随着温度或黏度的变化,这些现象都会对开采质量产生影响。本文将重点论述工艺管线蒸汽伴热的设计和优化。 关键词:工艺管线 蒸汽伴热 石油 设计

(能源化工行业)化工管道伴热设计规定

(能源化工行业)化工管道伴热设计规定

化工管道伴热设计规定 伴热方式及其选用 石油化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。它的特点是伴热介质取用方便,除某些特殊的热载体外,都是由企业的公用工程系统供给。伴热方式多种多样,适用于输送各种介质及操作条件下的工艺管道。通过几十年的实际运行,证实安全可靠。由于工艺管道内介质的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件,现分析如下。 壹、伴热介质 1.热水 热水是壹种不常用的伴热介质,适用于在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源。当企业有这壹部分余热能够利用,而伴热点布置比较集中是时,可优先使用。有些厂用于原油罐或添加剂罐的加热,前者是为了节省蒸汽利用余热,后者是控制热源介质的温度,防止添加剂分解变质。 2.蒸汽 蒸汽是国内外石油化工企业中广泛采用的壹种伴热介质,取用方便,冷凝潜热大,温度易于调节,使用范围广。石油化工企业中蒸汽可分高压、中压及低压三个系统,而用于伴热的是中、低压俩个系统,基本上能满足石化企业中工艺管道的使用要求。 3.热载体 当蒸汽(指中、低压蒸汽)温度不能满足工艺要求时,才采用热载体作为热源。这些热载体在炼油厂中常用的有重柴油或馏程大于300℃馏分油;在石油化工企业中有联苯-联苯醚或加氢联三苯等。 热载体作伴热介质,壹般用于管内介质的操作温度大于150℃的夹套伴热系统。 4.电热 电热是壹种利用电能为热源的伴热技术。电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。 二、伴热方式 内伴热管伴热 伴热管安装在工艺管道(以下也称主管)内部,伴热介质释放出来的热量。全部用于补充主管内介质的热损失。这种结构的特点: (1)热效率高,用蒸汽作为热源时,和外伴热管比较,能够节省15~25%的蒸汽耗量;(2)内伴热管的外侧传热系数hi,和主管内介质的流速、粘度有关; (3)由于它安装在工艺管道内部,所以伴热管的管壁加厚。无缝钢管的自然长度壹般为8~13米,伴热管的焊缝又不允许留在工艺管道内部,因此弯管的数量大大增多,施工工程量随之加大。 (4)伴热管的热变形问题应予重视,否则将引起伴热管胀裂事故,既影响产品质量,又要停产检修。 (5)这种结构型式不能用于输送有腐蚀性及热敏性介质的管道。壹般很少用于石化企业工艺管道。 外伴热管伴热 外伴热管是目前国内外石化企业普遍采用的壹种伴热方式,其伴热介质壹般有蒸汽和热水俩种。伴热管放出的热量,壹部分补充主管(或称被伴管)内介质的热损失,另壹部分通过保温层散失到四周大气中。在硬质圆形保温预制管壳中,主管和伴热管之间有壹最大的保温空间,也就是伴热管放出的热量,几乎全部代替主管的热损失,因而这种型式的伴热保温结构,热源的耗量是最省的。

《柔性接口给水管道支墩》(10S505国标图集)简介

《柔性接口给水管道支墩》(10S505国标图集)简介 赵彤王为陈曦 (中国市政工程东北设计研究总院长春130021) (China Northeast Municipal Engineering Design and Research Institute,Changchun 130021)[摘要] 本文简要介绍《柔性接口给水管道支墩》国家建筑标准图集10S505的编写过程、主要内容、适用范围、选用说明、修编过程中重点讨论的问题,同时论述了本图集未列入水平叉管、管道变径等特殊支墩的原因,并提出了相应概念设计。 [关键词]柔性接口管道支墩土壤等效内摩擦角地下水水平叉管管道变径ABSTRACT:This article introduces the 《Buttress for Flexible interface of water supply pipeline》10S505 national standard drawings in the area of preparation process, main content, scope, selection description, key issues discussed on the process of revising, while discusses the reasons that the level fork tube, reducing pipeline and other special buttress are not included in the standard drawings , and put forward the corresponding conceptual design. KEYWORDS:Flexible interface Pipeline buttress Equivalent angle of internal friction of soil Groundwater The level fork tube Reducing pipeline 1前言 柔性接口给水管道支墩在给水排水管道工程中应用广泛,但其计算过程复杂,工程设计人员往往需要花费大量时间进行支墩的设计。自03SS505《柔性接口给水管道支墩》国家标准图集出版后,工程设计人员按标准图集即可直接选用管道支墩,避免了复杂的结构计算,省时、省力,取得了良好的效果。近些年,我国陆续修编了多本给水排水工程管道结构设计规范和规程,对结构的耐久性和可靠性要求越来越高,故原03SS505 图集有必要重新修编。 依照建设部建质函[2008]83号“关于印发《2008年国家建筑标准设计编制工作计划》的通知”对原03SS505图集进行修编,以便与新版管道结构规范有关规定、规程相符合。以实用性为原则,结合工程实践经验,力求修编后的柔性接口管道支墩标准图集安全可靠、经济合理、简单适用,最大限度地提高使用人的工作效率。 本次修编主要针对原图集不适合最新规范和规程之处进行,所以前期主要收集了新版规范和规程,认真核实原图集不符合新版规范、规程之处。另外还收集了铸铁管(包括球墨铸铁管、未经退火处理的球态铸铁管等)、混凝土管(包括钢筋混凝土管、预应力混凝土管、预应力钢筒混凝土管)、化学管材管[包括硬聚氯乙烯圆管(UPVC)、聚乙烯圆管(PE)、玻璃纤维

[整理]化工管道伴热设计规定1

化工管道伴热设计规定伴热方式及其选用石油化工企业中的管道,常用伴热的方法以维持生产操作及停输期间管内介质的温度。它的特点是伴热介质取用方便,除某些特殊的热载体外,都是由企业的公用工程系统供给。伴热方式多种多样,适用于输送各种介质及操作条件下的工艺管道。通过几十年的实际运行,证实安全可靠。由于工艺管道内介质的生产条件复杂,因此选用伴热介质,确定伴热方式都应取决于工艺条件,现分析如下。 一、伴热介质 1.热水 热水是一种不常用的伴热介质,适用于在操作温度不高或不能采用高温伴热的介质的条件下,作为伴热的热源。当企业有这一部分余热可以利用,而伴热点布置比较集中是时,可优先使用。有些厂用于原油罐或添加剂罐的加热,前者是为了节省蒸汽利用余热,后者是控制热源介质的温度,防止添加剂分解变质。 2.蒸汽 蒸汽是国内外石油化工企业中广泛采用的一种伴热介质,取用方便,冷凝潜热大,温度易于调节,使用范围广。石油化工企业中蒸汽可分高压、中压及低压三个系统,而用于伴热的是中、低压两个系统,基本上能满足石化企业中工艺管道的使用要求。 3.热载体

当蒸汽(指中、低压蒸汽)温度不能满足工艺要求时,才采用热载体作为热源。这些热载体在炼油厂中常用的有重柴油或馏程大于300℃馏分油;在石油化工企业中有联苯-联苯醚或加氢联三苯等。 热载体作伴热介质,一般用于管内介质的操作温度大于150℃的夹套伴热系统。 4.电热 电热是一种利用电能为热源的伴热技术。电伴热安全可靠,施工简便,能有效地进行温度控制,防止管道介质温度过热。 二、伴热方式 1.内伴热管伴热 伴热管安装在工艺管道(以下也称主管)内部,伴热介质释放出来的热量。全部用于补充主管内介质的热损失。这种结构的特点:(1)热效率高,用蒸汽作为热源时,与外伴热管比较,可以节省15~25%的蒸汽耗量; (2)内伴热管的外侧传热系数h i,与主管内介质的流速、粘度有关;(3)由于它安装在工艺管道内部,所以伴热管的管壁加厚。无缝钢管的自然长度一般为8~13米,伴热管的焊缝又不允许留在工艺管道内部,因此弯管的数量大大增多,施工工程量随之加大。 (4)伴热管的热变形问题应予重视,否则将引起伴热管胀裂事故,既影响产品质量,又要停产检修。 (5)这种结构型式不能用于输送有腐蚀性及热敏性介质的管道。一般很少用于石化企业工艺管道。

工艺设计管道系统试压方案最终版

甲乙酮厂成品装卸设施移位 工艺管道试压案 编制: 审核: 批准: 克拉玛依市独山子天谊建筑安装工程有限公司 2015年05月02日 1. 概述

1.1地点:天利高新工业园区甲乙酮厂 1.2 容:本工程为安装DN80无缝钢管1860米,重约20吨,DN50不锈钢管653米,重约8吨,DN20无缝钢管1400米,重约4吨。 2. 编制说明 2.1本案甲乙酮厂成品装卸设施移位工艺安装项目试压而制定。 2.2试压系统图详见附表。 3. 编制依据 3.1甲乙酮厂成品装卸设施移位工艺安装项目的相关文件及图纸。 3.2《工业金属管道工程施工及验收规》GB50235-2011。 4. 试压前的检查和准备工作 4.1管道系统施工完毕,试压前应经业主单位和监理公司共同检查,以确认安装质量符合设计要求和规规定,对发现的质量问题必须及时整改。 4.2焊缝及其它待检部位,未曾涂漆和绝热。 4.3焊接工作结束,并经无损探伤检验合格。 4.4试压案已经批准,并已进行了详细技术交底。 4.5工程技术人员已将“试压系统图”绘制并核对完毕,试压系统图中应详细注明以下容: 4.5.1 试验法、介质和试验压力; 4.5.2 参与试压的设备清单; 4.5.3 要插入临时盲板的位置; 4.5.4 试验中要打开或关闭的阀门; 4.5.5 排放的位置;

4.5.6 在线仪表及其要拆卸或待安装的位置; 4.5.7 试压用压力表的位置及压力注入口和排液口的位置。 4.6管道临时加固措施经检查确认安全可靠。 4.7试验前应将不能参与试验的系统、设备、仪表及管道附件等加以隔离。所有调节阀、膨胀节应安装临时短管及临时限位装置。疏水阀前置阀门关闭好。 4.8加置盲板处已挂牌显示,并有记录。 4.9试压用工机具及手段措施用料准备齐全,且满足使用。 4.10试压用的压力表已经校验,并在期,精度不低于1.5级,表的满刻度值为最大被测压力的1.5-2倍。 5. 管道试压 管道试压应以压力等级分系统进行试验。先试罐区部分,再试罐区外部分。 5.1试压目的 管道安装完毕后,应按设计要求和规规定对整个管道系统进行强度试验,以检查管道系统及各连接部位的工程安装质量。 5.2试压法 5.2.1 水压试验 水压试验时,必须排尽系统的空气。升压应分级缓慢,达到试验压力后停压10min,然后降至设计压力,停压30min,不降压、无泄露和无变形为合格。 5.3试验压力和试验介质 5.3.1 水压试验的强度试验压力为设计压力的1.5倍。

相关文档