文档库 最新最全的文档下载
当前位置:文档库 › 高中物理带电粒子在磁场中的运动压轴题提高题专题含答案

高中物理带电粒子在磁场中的运动压轴题提高题专题含答案

高中物理带电粒子在磁场中的运动压轴题提高题专题含答案

一、带电粒子在磁场中的运动压轴题

1.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=

3

2

mv 02。两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7

2

R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;

(2)如果某次实验时将磁场O 的圆心往上移了2

R

,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。

【答案】(1) 02v v =;02mv B eR =(2) 0336

12

l π+≥ 【解析】 【详解】

解:(1)对于单个质子进入加速电场后,则有:22

0011eU mv mv 22

=- 又:2

003eU mv 2

=

解得:0v 2v =;

根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为

轨迹的圆心,如图所示,并可知轨迹半径r=R

根据洛伦磁力提供向心力有:2

v evB m r

=

可得磁场磁感应强度:0

2mv B eR

=

(2)磁场O 的圆心上移了

R

2

,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心

由于磁场上移了R 2,故sin ∠COF=R

2R

=12,∠COF=π6,∠DOF=∠FKD=π

3

对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,

下方粒子到达C 后最先到达D 点的粒子所需时间为00

(2)

(4)2

224R

R H R R t v v π

π++

-+'==

而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0

l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为

()0

00π1

R Rsin 2πR 62π3336t R 2v 2v 12v -+-=

+=

要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336

l 12

++≥

2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0

(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;

(3)挡板上被粒子打中的区域长度. 【答案】(1)mv

qR (2)(21),0R ⎡⎤⎣⎦21042R +- 【解析】 【分析】 【详解】

(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,

由2

v qvB m r

=

得:mv B qR

=

(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点

2DP R =(21)OP R =+

P 点的坐标为((21)R +,0 )

(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①

过O 点做挡板的垂线交于G 点,

22(21)(1OG R R ==+② 225-22=2

FG OF OG R =-③

2

2

EG R =

④ 挡板上被粒子打中的区域长度l =FE 2R +5-222R 2+10-42R ⑤

3.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.

(1)求两板间磁场的磁感应强度大小B .

(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223

cos 2d R a R L ≥+= ;min 0

(632)3L T v π+= 【解析】 【分析】 【详解】

(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0

1

02qv B m v R =

由几何关系:222113()()22

L L

R R =+- 解得0

mv B qL

=

(2)粒子P 从O 003L v t =

011

22

y L v t =

解得0y v =

设合速度为v ,与竖直方向的夹角为α

,则:0

tan y

v v α== 则=

3

π

α

00sin v v α=

= 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则

21

2sin L R α

=

解得2R =

右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R α≥+=

; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:

2

min 0(22)2R T t v

πα--=

解得()

min 0

23L T v π=

【点睛】

带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.

4.如图,平面直角坐标系中,在,y >0及y <-3

2

L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-

3

2

L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(3

2L ,0)进入磁场.在磁场中的运转半径R =52

L (不计粒子重力),求:

(1)粒子到达P 2点时的速度大小和方向; (2)

E B

; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)5

3v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()0

4053760L v π+. 【解析】 【详解】

(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y , 由运动学规律知

3

2

L =v 0t 1,

L =

2

y v t 1

可得t 1=032L v ,v y =4

3

v 0

故粒子在P 2的速度为v 22

0y v v +53

v 0 设v 与x 成β角,则tan β=

y v v =

4

3

,即β=53°; (2)粒子从P 1到P 2,根据动能定理知qEL =

12mv 2-1

2

mv 02可得 E =2089mv qL

粒子在磁场中做匀速圆周运动,根据qvB =m 2

v R

解得:B =mv qR =05352

m v q L ⨯⨯=023mv qL

解得:

43

v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3

2

L 直线与Q ′点,可得: P 2O ′=

3253L cos =5

2

L =r

故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-

32

L 直线从M 点穿出磁场,由几何关系知M 的坐标x =

3

2

L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0

32L

v

在磁场中由P 2到M 动时间:t 2=

372360r v π︒⨯=0

37120L

v π 从M 运动到N ,a =qE m =2

89v L

则t 3=

v a =0

158L

v 则一个周期的时间T =2(t 1+t 2+t 3)=

()0

4053760L

v π+.

5.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.

(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B

②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2

010U e y y t dm

∆=∆= 【解析】 【详解】

(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:

2222

000max 00000311222y U e U e U e y at v t t t t dm dm dm

=

+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:

220min 001122U e y at t dm

=

= 最远位置和最近位置之间的距离:1max min y y y ∆=-,

2

010U e y t dm

∆=

(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:

sin L R θ

=

设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1

sin y v v θ=,

式中00y U e

v t dm = 又:1

mv R Be

=

解得:00

U t B dL

=

②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.

由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2

010U e y y t dm

∆=∆=

6.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x 垂直.粒子速度大小5

0 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:

(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;

(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).

【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】

解:(1) 由带电粒子在匀强磁场中运动可得:20

20v B qv m r

= 解得粒子运动的半径:1r m =

(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212

y at =

Eq a m = 0tan 45v at ︒=

联立解得:2x m =,1y m =

由图示几何关系得:d x y R =++

解得:4d m =

(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:()12r y R =+

02v v =

由带电粒子在匀强磁场中运动可得:211

v B qv m r '= 解得:10.1B T '=

若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:()2222r r y R +=+

由带电粒子在匀强磁场中运动可得:212

v B qv m r ''= 解得1210.2410

B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥

(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:

1114t T = 102R T v π=

20

x t v = 3212t T = 222r T v

π= 解得:()55

1232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯

7.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(q m

)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:

(1)电场强度的大小;

(2)带电微粒的初速度;

(3)带电微粒做圆周运动的圆心坐标.

【答案】(1)g k (2)2g kB (3)222

2232(,)28g k B L L k B g

- 【解析】

【分析】

【详解】

(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=q k m

解得g E k = (2)由几何关系:2R cos θ=L ,

粒子做圆周运动的向心力等于洛伦兹力:2

v qvB m r

= ; 由cos y

v v θ=

在进入复合场之前做平抛运动:y gt =v

0L v t =

解得02g v kB

=

(3)由212

h gt = 其中2kBL t g = , 则带电微粒做圆周运动的圆心坐标:'32O x L =; 222

'222sin 8O g k B L y h R k B g θ=-+=-

8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:

(1)第1个小球的带电量大小;

(2)磁场的磁感强度的大小B ;

(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.

【答案】(1) 2012mv q Eh

=;(2) 02E B v =;(3)存在,0E B v '= 【解析】

【详解】

(1)设第1球的电量为1q ,研究A 到C 的运动:

2112q E h t m

= 02h v t =

解得:2012mv q Eh

=; (2)研究第1球从A 到C 的运动:

12y q E v h m

= 解得:0y v v =

0tan 1y

v v θ==,45o θ=,02v v =;

研究第1球从C 作圆周运动到达O 的运动,设磁感应强度为B

由21v q vB m R =得1

mv R q B = 由几何关系得:22sin R h θ=

解得:0

2E B v = ; (3)后面抛出的小球电量为q ,磁感应强度B '

①小球作平抛运动过程

002hm x v t v qE

== 2y qE v h m

= ②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:

sin mv x qB θ'= 解得:0

E B v '= .

9.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M 点的坐标为(

233

L ,0).求 (1)电子飞出磁场时的速度大小v

(2)电子在磁场中运动的时间t

【答案】(1)02v v =;(2)20

49L t v π=

【解析】

【详解】 (1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,

(1)在电场中x 0123L v t =,y 轴方向12y v L t =:,0tan 3y v v θ==得60θ=,002cos v v v θ

== (2)在磁场中,234sin 3

L r L θ== 磁场中的偏转角度为23απ= 20

2439r

L t v v ππ==

10.如图(a )所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N 1、N 2构成,两盘面平行且与转轴垂直,相距为L ,盘上各开一狭缝,两狭缝夹角可调(如图(b ));右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B 。一小束速度不同、带正电的粒子沿水平方向射入N 1,能通过N 2的粒子经O 点垂直进入磁场, O 到感光板的距离为

2

d ,粒子电荷量为q ,质量为m ,不计重力。

(1)若两狭缝平行且盘静止(如图(c )),某一粒子进入磁场后,数值向下打在感光板中心点M 上,求该粒子在磁场中运动的时间t ;

(2)若两狭缝夹角为0θ,盘匀速转动,转动方向如图(b ),要使穿过N 1、N 2的粒子均打到感光板P 1、P 2连线上,试分析盘转动角速度的取值范围(设通过N 1的所有粒子在盘转一圈的时间内都能到达N 2)。

【答案】(1)2m t qB π=

;(2)00544dqB dqB mL mL θθω≤≤ 【解析】

【分析】

【详解】

(1)粒子运动的半径为

R =2

d ① 由牛顿第二定律

qvB =m 2

v R

② 匀速圆周运动的周期

T =2R v

π③ 粒子在磁场中运动的时间

t =4T =2m qB

π. ④ (2)如图所示,设粒子运动临界半径分别为R 1和R 2

R 1=4

d ⑤ d 2+(R 2-

2d )2=R 22 R 2=54

d ⑥ 设粒子临界速度分别为v 1和v 2, 由②⑤⑥式,得

v 1=

4dqB m ⑦ v 2=54dqB m

⑧ 若粒子通过两转盘,由题设可知 L v =0θω

⑨ 联立⑦⑧⑨,得对应转盘的转速分别为 ω1=

04dqB mL θ ω2=054dqB mL

θ 粒子要打在感光板上,需满足条件 04dqB

mL θ≤ω≤

054dqB mL θ.

高中物理带电粒子在磁场中的运动压轴题提高题专题含答案

高中物理带电粒子在磁场中的运动压轴题提高题专题含答案 一、带电粒子在磁场中的运动压轴题 1.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0= 3 2 mv 02。两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7 2 R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。 (1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ; (2)如果某次实验时将磁场O 的圆心往上移了2 R ,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。 【答案】(1) 02v v =;02mv B eR =(2) 0336 12 l π+≥ 【解析】 【详解】 解:(1)对于单个质子进入加速电场后,则有:22 0011eU mv mv 22 =- 又:2 003eU mv 2 = 解得:0v 2v =; 根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为

轨迹的圆心,如图所示,并可知轨迹半径r=R 根据洛伦磁力提供向心力有:2 v evB m r = 可得磁场磁感应强度:0 2mv B eR = (2)磁场O 的圆心上移了 R 2 ,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心 由于磁场上移了R 2,故sin ∠COF=R 2R =12,∠COF=π6,∠DOF=∠FKD=π 3 对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点, 下方粒子到达C 后最先到达D 点的粒子所需时间为00 (2) (4)2 224R R H R R t v v π π++ -+'== 而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0 l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为2v 0 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

高考物理带电粒子在磁场中的运动压轴题综合题附答案解析

高考物理带电粒子在磁场中的运动压轴题综合题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为 510/q C kg m =的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求: (1)两金属极板间的电压U 是多大? (2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置. (3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件. 【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3 T π -<⨯ 【解析】 试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度 代入数据得U=100V (2) 粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间 射出点在AB 间离O 点 (3)粒子运动周期 ,粒子在t=0、 ….时刻射入时,粒子最

可能从AB 间射出 如图,由几何关系可得临界时 要不从AB 边界射出,应满足 得 考点:本题考查带电粒子在磁场中的运动 2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计. (1)求两板间磁场的磁感应强度大小B . (2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223 cos d R a R ≥+= ;min 0(632)L T π+=【解析】 【分析】 【详解】

高考物理带电粒子在磁场中的运动压轴题试卷附答案解析

高考物理带电粒子在磁场中的运动压轴题试卷附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e. (1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ; (2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收) (3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)2 2e eU v v m =+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】 (1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据= ne I t 求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】 (1)对电子经 CA 间的电场加速时,由动能定理得 2211 22 e e U mv mv = - 解得:22e eU v v m = +(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 = ne I t 224d dN n N a a ππ= =⨯

带电粒子在磁场中的运动压轴难题知识归纳总结含答案

带电粒子在磁场中的运动压轴难题知识归纳总结含答案 一、带电粒子在磁场中的运动压轴题 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为20 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

高中物理带电粒子在磁场中的运动压轴题复习题及答案

高中物理带电粒子在磁场中的运动压轴题复习题及答案 一、带电粒子在磁场中的运动压轴题 1.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。相当于给反应物制作一个无形的容器。2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。 (1)2018年11月16日,国际计量大会利用玻尔兹曼常量将热力学温度重新定义。玻尔兹曼常量k 可以将微观粒子的平均动能与温度定量联系起来,其关系式为3 2 k E kT = ,其中k=1.380649×10-23J/K 。请你估算温度为一亿度时微观粒子的平均动能(保留一位有效数字)。 (2)假设质量为m 、电量为q 的微观粒子,在温度为T 0时垂直进入磁感应强度为B 的匀强磁场,求粒子运动的轨道半径。 (3)东方超环的磁约束原理可简化如图。在两个同心圆环之间有很强的匀强磁场,两圆半径分别为r 1、r 2,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大都不会穿出磁场的外边缘,而被约束在该区域内。已知带电粒子质量为m 、电量为q 、速度为v ,速度方向如图所示。要使粒子不从大圆中射出,求环中磁场的磁感应强度最小值。 【答案】(1)15 210J k E -≈⨯ (2)03kmT (3)() 222 212 r mv q r r - 【解析】 【详解】 (1)微观粒子的平均动能:153 2102 k E kT -=≈⨯J (2) 2031 kT mv 22 = 解得: 0 3kT v m = 由2 v Bqv m R = 03kmT R =

高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案解析

高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求: (1)带电粒子入射速度的大小; (2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小. 【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d m θ 【解析】 【分析】 画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】 (1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .

由几何关系可知:cos d R θ= 洛伦兹力做向心力:20 0v qv B m R = 解得0cos qBd v m θ = (2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ θ = (3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B 解得2qB d E mcos θ = 【点睛】 此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力. 2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷; (2)求粒子束射入电场的纵坐标范围; (3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.

高中物理带电粒子在磁场中的运动压轴题综合题及答案解析

高中物理带电粒子在磁场中的运动压轴题综合题及答案解析 一、带电粒子在磁场中的运动压轴题 1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求: (1)带电粒子入射速度的大小; (2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小. 【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d m θ 【解析】 【分析】 画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】 (1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .

由几何关系可知:cos d R θ= 洛伦兹力做向心力:20 0v qv B m R = 解得0cos qBd v m θ = (2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ θ = (3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B 解得2qB d E mcos θ = 【点睛】 此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力. 2.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。相当于给反应物制作一个无形的容器。2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。

高考物理带电粒子在磁场中的运动习题知识归纳总结含答案解析

高考物理带电粒子在磁场中的运动习题知识归纳总结含答案解析 一、带电粒子在磁场中的运动压轴题 1.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、 Q 两点之间的距离为 2 L ,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。 (1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。 【答案】(1)2U E L = ,2M eU v m =v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==3 348M R L m t v eU ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】 (1)在加速电场中,从P 点到Q 点由动能定理得:2 012 eU mv = 可得02eU v m = 电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU = =

高考物理带电粒子在磁场中的运动压轴题提高题专题附答案解析

高考物理带电粒子在磁场中的运动压轴题提高题专题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为2v 0 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

高中物理带电粒子在磁场中的运动习题综合题附答案解析

高中物理带电粒子在磁场中的运动习题综合题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于 2R,在圆形磁场的左侧0

(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点 2DP R =(21)OP R =+ P 点的坐标为((21)R +,0 ) (3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ① 过O 点做挡板的垂线交于G 点, 22(21)(1OG R R ==+② 225-22=2 FG OF OG R =-③ 2 2 EG R = ④ 挡板上被粒子打中的区域长度l =FE 2R +5-222R 2+10-42R ⑤

带电粒子在磁场中的运动习题提高题专题附答案解析

带电粒子在磁场中的运动习题提高题专题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计. (1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间. (2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大? (3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字). 【答案】(1)(2)(3) 【解析】 【分析】 (1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间. (2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度. (3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积. 【详解】 (1)由得r1=2R 粒子的运动轨迹如图所示,则α= 因为周期. 运动时间.

(2)粒子运动情况如图所示,β=. r 2=R tanβ=R 由 得 (3)粒子的轨道半径r 3= =1.5cm 粒子到达的区域为图中的阴影部分 区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2 【点睛】 本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练. 2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为 2 R ,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:

高中物理带电粒子在磁场中的运动压轴难题提高题专题含答案解析

高中物理带电粒子在磁场中的运动压轴难题提高题专题含答案解析 一、带电粒子在磁场中的运动压轴题 1.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应. (1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ; (2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围. 【答案】(1)Bvd (2)Bb (3)3B 2d 2 b <U <221458 B d b 【解析】 【详解】 (1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee 因为正电子的比荷是b ,有 E= U d 联立解得:

高中物理带电粒子在磁场中的运动压轴难题综合题附答案解析

高中物理带电粒子在磁场中的运动压轴难题综合题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求: (1)求带电粒子在磁场中运动的半径r ; (2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ; (3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为 222x y R +=(30.1, 0.120R m m x m =≤≤) 【解析】 【分析】 【详解】 (1)洛伦兹力充当向心力,根据牛顿第二定律可得2 v qvB m r =,解得0.1r m = (2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场, 粒子在电场中运动的加速度qE a m =

粒子在电场中运动的时间2v t a = 解得43.310t s -=⨯ (3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°, 则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上, 曲线方程为22 x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭ 【点睛】 带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径 2.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2 R 的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域. (1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;

高中物理带电粒子在磁场中的运动习题知识点及练习题含答案

高中物理带电粒子在磁场中的运动习题知识点及练习题含答案 一、带电粒子在磁场中的运动压轴题 1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为 2 L ()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回. (1)求粒子到达O 点时速度的大小; (2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23 能打到MN 板上,求所加磁感应强度的大小; (3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L φ = ,若从AB 圆弧面收集到的某粒子经 O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m ϕ =2)12m B L q ϕ=3)060α∴= ;22m L q ϕ 【解析】 【分析】 【详解】 试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2 102 qU mv =- 2U ϕϕϕ=-=2q v m ϕ=

高中物理带电粒子在磁场中的运动习题培优题附答案解析

高中物理带电粒子在磁场中的运动习题培优题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求: (1)带电粒子入射速度的大小; (2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小. 【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d m θ 【解析】 【分析】 画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】 (1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .

由几何关系可知:cos d R θ= 洛伦兹力做向心力:200v qv B m R = 解得0cos qBd v m θ = (2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ = (3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B 解得2qB d E mcos θ = 【点睛】 此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力. 2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为 V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:

带电粒子在磁场中的运动压轴题提高题专题及答案解析

带电粒子在磁场中的运动压轴题提高题专题及答案解析 一、带电粒子在磁场中的运动压轴题 1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为 2 L ()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回. (1)求粒子到达O 点时速度的大小; (2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23 能打到MN 板上,求所加磁感应强度的大小; (3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L φ = ,若从AB 圆弧面收集到的某粒子经 O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m ϕ =2)12m B L q ϕ=3)060α∴= ;22m L q ϕ 【解析】 【分析】 【详解】 试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2 102 qU mv =- 2U ϕϕϕ=-=2q v m ϕ=

(2)从AB 圆弧面收集到的粒子有 2 3 能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=. 根据几何关系,粒子圆周运动的半径:2R L = 由洛伦兹力提供向心力得:2 v qBv m R = 联合解得:12m B L q ϕ = (3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标. 2 12qE L t m = 222mL m t L qE q ϕ = =22x Eq qEL q v t m m m ϕ = == 若速度与x 轴方向的夹角为α角

高考物理带电粒子在磁场中的运动压轴题综合题及答案解析

高考物理带电粒子在磁场中的运动压轴题综合题及答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为 510/q C kg m =的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求: (1)两金属极板间的电压U 是多大? (2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置. (3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件. 【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3 T π -<⨯ 【解析】 试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度 代入数据得U=100V (2) 粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间 射出点在AB 间离O 点 (3)粒子运动周期 ,粒子在t=0、 ….时刻射入时,粒子最

可能从AB 间射出 如图,由几何关系可得临界时 要不从AB 边界射出,应满足 得 考点:本题考查带电粒子在磁场中的运动 2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求: (1)带电粒子入射速度的大小; (2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小. 【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d m θ 【解析】 【分析】 画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子

高中物理带电粒子在磁场中的运动习题知识点及练习题附答案

高中物理带电粒子在磁场中的运动习题知识点及练习题附答案 一、带电粒子在磁场中的运动压轴题 1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为 03mv qB ,虚线MN 右侧电场强度为3mg q ,重力加速度为g .求: (1)MN 左侧区域内电场强度的大小和方向; (2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹; (3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p . 【答案】(1) mg q ,方向竖直向上;(2);(3013v . 【解析】 【详解】 (1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mg E q 左= ,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:20 0mv Bv q R =, 所以轨道半径0 mv R qB = ; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有0 33AO mv d R = =;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹

相关文档
相关文档 最新文档