文档库 最新最全的文档下载
当前位置:文档库 › 促进肺血管生成发育的细胞因子及信号通路进展优先出版

促进肺血管生成发育的细胞因子及信号通路进展优先出版

促进肺血管生成发育的细胞因子及信号通路进展优先出版
促进肺血管生成发育的细胞因子及信号通路进展优先出版

第15卷 第9期 2013年9月

中国当代儿科杂志

Chin J Contemp Pediatr

Vol.15 No.9Sep. 2013

促进肺血管生成发育的细胞因子及信号通路研究进展

马兴娜 综述 李秋平 封志纯 审校

(北京军区总医院附属八一儿童医院新生儿重症监护病房,北京 100007)

[摘要] 随着产前和产后医疗水平和护理水平的提高,支气管肺发育不良(BPD)的发生率逐渐增加,而其发病机制尚不明确,“新型”BPD 理论中指出肺泡结构简单化和肺微血管发育异常最终导致肺气血交换的功能减弱是BPD 发病的核心机制,因而肺微血管发育的研究逐渐受到重视。肺血管生成及发育过程中需要多种细胞因子及信号通路的参与,这其中最重要的有VEGF/VEG -FR 信号通路、Ang/Tie 信号通路、Ephrins/Eph 信号通路、Notch/Jagged1信号通路等,这些细胞因子及信号通路在肺血管发育过程中发挥重要作用。

[中国当代儿科杂志,2013,15(9):800-804]

[关键词] 肺血管;血管生成;支气管肺发育不良;细胞因子;信号通路

Research progress in cytokines and signaling pathways for promoting pulmonary angiogenesis and vascular development

MA Xing-Na, LI Qiu-Ping, FENG Zhi-Chun. Department of Neonatal Intensive Care Unit, Bayi Children’s Hospital Affiliated to General Hospital of Beijing Military Command of People's Liberation Army, Beijing 100007, China (Email: zhuifengma21@https://www.wendangku.net/doc/e76282804.html,)

Abstract: With the advances in pre- and post-natal medical care, the incidence of bronchopulmonary dysplasia (BPD) is on the rise, while its pathogenesis remains not clear. New BPD theory shows that the core pathogenesis of BPD is simple alveolar structure and pulmonary microvascular abnormalities that eventually lead to reduced pulmonary gas exchange, so the research on pulmonary microvascular development was gradually taken seriously. Pulmonary angiogenesis and vascular development require the participation of various cytokines and signaling pathways, the most important of which include VEGF/VEGFR pathway, Ang/Tie pathway, Ephrins/Eph pathway, and Notch/Jagged1 pathway. These cytokines and signaling pathways play important roles in pulmonary vascular development.

[Chin J Contemp Pediatr, 2013, 15(9):800-804]

Key words: Pulmonary vascular; Angiogenesis; Bronchopulmonary dysplasia; Cytokine; Signaling pathway

综述

[收稿日期] 2013-01-27;[修回日期] 2013-03-23

[基金项目]国家自然科学基金青年科学基金项目(No.81000265)。[作者简介]马兴娜,女,硕士研究生。

DOI:10.7499/j.issn.1008-8830.2013.09.024

近年来随着支气管肺发育不良(broncho -pulmonary dysplasia, BPD)的发生率逐渐增加,已成为影响早产儿生存质量的重要因素。随着“新型”BPD 的提出,肺微血管发育逐渐受到重视,BPD 患儿往往伴有肺微血管发育不良,导致肺泡数量减少、结构简单化,Steven 等[1]提出BPD 是由于肺血管发育不良导致肺泡发育异常的“血管发育障碍假说”,但在未成熟的肺内,肺血管发育过程的具体机制尚不清楚,这其中可能牵涉到多种细胞因子及信号通路[2-3](包括促进血管形成和

抑制血管形成的细胞因子、信号通路)的相互作用。其中促进肺血管生成及发育的细胞因子、信号通路如内皮细胞受体酪氨酸激酶(receptor tyrosine kinases, RTK)已经被公认为血管生成的重要信号分子, 它包括血管内皮生长因子受体(VEGFR)、血管生成素受体(Tie)和Eph(Erythropoietin producing humanhepatocellu larcell line)等,另外Notch /Jagged1信号通路及其他一些促进肺血管生成发育的细胞因子也发挥重要作用。

网络出版时间:2013-09-25 18:28

网络出版地址:https://www.wendangku.net/doc/e76282804.html,/kcms/detail/43.1301.R.20130925.1828.024.html

1 促进肺血管生成及发育的细胞因子、信号通路

1.1 血管内皮生长因子及其受体在肺血管发育过程中的作用

1.1.1 血管内皮生长因子的结构 血管内皮生长因子(VEGF)早期亦称作血管通透因子(VPF),是血管内皮细胞特异性的肝素结合生长因子,属血小板源性生长因子家族,可刺激血管内皮细胞的有丝分裂和血管的发生,提高单层内皮的通透性。VEGF有5个等型即A、B、C、D及E;其分子量从35至44 kDa不等,每个等型特异性地与三个VEGF受体(1~3)相结合,并发挥相应的作用。VEGF是高度保守的同源二聚体糖蛋白,由于mRNA不同的剪切方式,产生出VEGF121、VEGF145、VEGF165、VEGF185、VEGF206至少5种蛋白形式,其中VEGF121、VEGF145、VEGF165是分泌型可溶性蛋白,能直接作用于血管内皮细胞促进血管内皮细胞增殖,增加血管通透性。

1.1.2 VEGF在肺血管发育过程中的作用 在肺血管发育过程中的各种细胞因子中,VEGF是肺血管发育所需的最重要、最有效、最直接、最专一的生长因子,在整个胚胎期、胎儿期及生后肺发育过程中对肺血管的生长、发育、功能的维持均发挥重要作用,是血管形成早期阶段最为重要的细胞因子,具有高效的促血管内皮细胞生长的能力。目前对VEGF在肺血管发育过程中作用的研究多集中在VEGF与持续肺动脉高压及BPD等肺血管疾病的关系方面。有研究报道VEGF能促进新生大鼠肺发育,高氧可抑制VEGF蛋白及 mRNA在新生大鼠肺内的表达,提示VEGF在新生鼠肺发育和高氧肺损伤发病机制中起重要作用[4]。采用VEGF受体抑制剂SU5416或特殊的抗血管生成药物,可以有效的减少肺微血管的生成,使肺泡化进程受阻,肺泡数量和气体交换面积明显减少,呈现出与BPD惊人相似的病理特征[5]。VEGF/VEGFR信号通路[6-9]见图1。

图1 VEGF/VEGFR信号通路 血管内皮生长因子(VEGF)及其受体(VEGFR)结合后形成二聚体,VEGFR发生磷酸化,一些信号转导分子如磷脂酶C(PLC)、磷脂酰肌醇3-激酶(PI3K)、生长因子受体结合蛋白2(GRB2)等被激活。具体信号通路如下: (1)PLC在磷脂酰肌醇2(PIP2)的参与下转化为甘油二酯(DAG)及三磷酸肌醇(IP3),一方面通过激活蛋白激酶C (PKC),进一步激活RAF1-MEK-ERK途径,最终促进内皮细胞增殖;另一方面通过Ca2+使前列腺素合成增加,影响血管通透性。(2)PI3K被激活后进而激活Akt/PKB途径,一方面Bcl-2同源结构域-3相关蛋白(BAD)及半胱氨酸天冬氨酸蛋白酶-9(Caspase9)均被激活,从而减少细胞凋亡,最终促进血管生成;另一方面通过提高一氧化氮合酶(NOS)活性,从而增加NO的产生,促进血管生成。(3)GRB2能够同时与SHC、SOS结合形成SHC-GRB2-SOS复合物激活SOS,激活的SOS与质膜上的GTP结合蛋白(RAS)结合,并将其激活,进一步激活RAF1-MEK-ERK途径,最终促进内皮细胞增殖,促进新生血管形成。在VEGF受体家族中,VEGF R2是VEGFR中最主要的参与血管生成和内皮细胞增殖的受体。

1.2 血管生成素及Tie在肺血管发育过程中的作用

1.2.1 血管生成素的结构 血管生成素(Ang)是一族分泌型的生长因子,迄今为止,共发现有Ang-l、Ang-2、Ang-3和Ang-4 四种Ang家族成员,其受体分别为Tie-1及Tie-2,其中Ang-1与Tie-2是研究较早的Ang家族成员,对血管生成起主要作用。Ang-1由肺间质细胞及血管平滑肌细胞产生,而其受体Tie-2仅在内皮细胞中表达。Ang与其相应受体结合后,可以激活胞内酪氨酸激酶,启动下游细胞信号级联,进而促使新脉管生长。Ang的4个家族成员不同于VEGF,Ang家族成员中有些2+

对血管生成起促进作用,有些可能不仅无促进血管生成作用,反而起抑制作用。

1.2.2 Ang在肺血管发育过程中的作用 早在1995年就有研究报道,Ang-1-/-或Tie-2-/-的小鼠由于血管完整性被破坏导致其在胚胎期死亡,提示Ang-1可能在促进新生血管成熟、保持新生血管的连续性和完整性方面起着至关重要的作用[10]。之后对Ang-1的研究不断深入,梁斐等[11]报道新生小鼠吸入高浓度的氧(85%)后,定期测定小鼠血浆内Ang-1的量,结果显示随吸氧时间的延长,血浆内的Ang-1的量逐渐减少,所有小鼠最终均发生BPD,将小鼠处死后肺部微血管发育障碍(血管数量减少、直径缩小、血管分支减少),提示Ang-1不仅在肺血管发育过程中发挥重要作用,而且可能参与BPD的病理生理过程。Ang-1与Ang-2在血管发育中的作用有所不同[12-14],Ang-1与肺血管发育的完整性有关,在胚胎肺的血管发育过程中发挥重要作用,而Ang-2与败血症及肺炎时增加肺血管的通透性导致炎症渗出加重有关,与急性肺损伤的发生密切相关,甚至可作为判断急性肺损伤程度的一个重要标志。研究报道[15-17]Ang-1与Ang-4对血管生成起促进作用,而Ang-2与Ang-3对血管生成起抑制作用。但对Ang家族的研究多数集中在Ang-1/Tie-2,对其他成员目前研究较少。Ang/Tie信号通路[18-21]见图2。

图2 Ang/Tie信号通路 血管生成素(Ang)与其受体(Tie)结合后导致受体发生磷酸化,主要通过两条信号通路来调节血管生成,即(1)磷脂酰肌醇3-激酶(PI3K)途径:Ang与Tie结合后,受体发生磷酸化,激活PI3K,进而激活Akt/PKB途径,生存素(Survivin)、一氧化氮合酶(NOS)、Bcl-2同源结构域-3相关蛋白(BAD)、半胱氨酸天冬氨酸蛋白酶-9(Caspase-9)等均被激活,从而促进内皮细胞增殖、迁移,抑制凋亡,促进内皮细胞与其他细胞之间的相互作用,最终促进新生血管生成。(2)RAS途径:Ang与Tie结合后,受体发生磷酸化,激活与Tie相结合的生长因子受体结合蛋白2(GRB2),从而激活RAS-RAF1-MEK-ERK途径,最终促进内皮细胞增殖,促进新生血管形成。Ang-2与Tek结合后具体转导机制目前尚不清楚。

1.3 Ephrins/Eph在肺血管发育过程中的作用1.3.1 Ephrins的结构 Eph受体家族是受体酪氨酸激酶的最大家族, 目前已明确有13 种受体和8 种配体。Eph 受体家族分为EphA 和EphB 受体亚家族,前者包括8个家族成员,即EphA1~8,后者包括5个家族成员,即EphB1~4, Eph6,EphA 受体亚家族通过GPI联接锚定于膜上,而具有跨膜结构域的属于EphB受体亚家族。Ephrin家族配体只有膜附着形式具有活性, 可溶形式不仅无活性,实际上还起拮抗剂作用。Eph受体及其配体在神经系统及血管内皮细胞中高度表达,受体分别与相应的Ephrin 配体结合后产生双向信号,在胚胎形成、神经轴突导向、突触形成及血管发育中起着关键作用。

1.3.2 Ephrins在肺血管发育过程中作用 早期发现Ephrins的作用主要与肿瘤的转移有密切关系,其机制主要与减少细胞与细胞之间的黏附性有关[22],后经进一步研究发现,Ephrins家族引起肿瘤转移的另一个重要原因就是它的血管生成作用[23-24]。Salvucci等[25]的研究表明, EphB2受体及其跨膜配体在体外诱导血管生成的作用与Ang1和VEGF的功效类似,且内皮细胞与周围间充质细胞的相互作用需EphB受体及其配体间的信号转导。Wilkinson等[26]研究提示EphB2在出生后新生小鼠的肺泡发育及成熟中起到不可或缺的作用,在胚胎期将内胚层中EphB2的等位基因敲除后,小鼠肺发育异常、肺血管发育异常并伴有其他致命的缺陷。Vadivel等[27]报道EphrinB2在肺发育、肺血管生成及肺损伤后修复过程起到至关重要的作用,并提示EphrinB2可促进BPD小鼠的肺部血管发育及肺泡发育,为BPD的发病机制及治疗提供了新途径。然而,除EphrinB2外,Ephrin家族中也有一些与肺部炎症反应密切相关的受体及配体类型,研究报道,EphA2在肺受损伤后的炎症

I

血管生成(Angiogenesis)信号通路图

本实验技术来源于SciMall科学在线 血管生成(Angiogenesis)信号通路图 血管生成是通过人体中存在的诸多互补和复杂的信号途径调节的.血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)、血管生成素(Ang)-Tie2轴和Dll4-Notch这3个复杂的、相辅相成的信号传导通路可在调节血管生成中发挥重要作用. VEGF与内皮细胞上的两种受体KDR和Flt-1高亲和力结合后,直接刺激血管内皮细胞增殖,并诱导其迁移和形成官腔样结构;同时还可增加微血管通透性,引起血浆蛋白(主要是纤维蛋白原)外渗,并通过诱导间质产生而促进体内新生血管生成。VEGF在血管发生和形成过程中起着中枢性的调控作用,是关键的血管形成刺激因子。碱性成纤维细胞生长因子(bFGF)。TNF-α是一类具有血管活性的细胞因子,可诱导异位子宫内膜炎性细胞因子MCP-1,IL-6和IL-8等的释放,促进异位内膜及基质细胞增殖及炎性细胞浸润,新生血管形成,组织粘连,从而形成异位病灶。 (来源:Scimall科学在线) 本信号转导涉及的信号分子主要包括: HIF1α,PHDs,HIF1β,PI3K,Akt,mTOR,S6K,4E-BP1,eIF4E1,elF4E1,Ras,MEK1,MEK2,Erk1,Erk2,MNK,CBP,P300,TCEB1,TCEB2,Rbx1,Cul2,VHL,MMP,Cox2,PAI-1,VEGF,PDGFR-β,VEGFR2,Tie2,FGFR,IGFR,TGFα-R,SLIT,ROBO,Src,FAK,p38,MAPK,Smad2,Smad3,PLCγ,NOS等。 点击图中信号分子,自动寻找相关试剂

细胞因子详解

捋捋让人迷惑的细胞因子 细胞因子是一类调节蛋白或者糖蛋白,他们的分类现在还不是完全清楚。他们通过结合细胞表面的特定受体,激发细胞内信号通路起作用。 白细胞组成了免疫和炎症系统,大多数细胞因子作用于白细胞或者由白细胞表达,他们在免疫和炎症反应中起到重要的调节作用。实际上,一些免疫抑制和抗炎作用的药物就是通过调节这些细胞因子的表达起作用的。 细胞因子由特定的细胞表达并分泌到胞外,结合细胞表面的细胞因子受体后激活细胞内信号 传导通路 细胞因子分类 细胞因子最早在20世纪70年代中期被提出,它当时被认为是一种多肽因子,可以调控细胞分化和免疫系统。干扰素(IFNs)和白介素(ILs)是主要的多肽家族,在当时细胞因子主要指这两类家族。 起初细胞因子的分类主要是根据分泌该因子的细胞类型或者细胞因子初次被发现时的生物活性。然而这些分类方法现在看来都不够准确,无法满足后期的分类需求。最近,根据细胞

因子一级,二级和三级结构的分析,可以将大多数的细胞因子分为6大家族。因此,根据分类方式的不同,某些细胞因子会有多个名称。 表1:细胞因子根据结构分类结果 细胞因子家族成员 ‘β-Trefoil’ cytokines Fibroblast growth factors Interleukin-1 Chemokines Interleukin-8 Macrophage inflammatory proteins ‘Cysteine knot’ cytokines Nerve growth factor Transforming growth factors Platelet-derived growth factor EGF family Epidermal growth factor Transforming growth factor-αHaematopoietins Interleukins 2–7, -9, -13 Granulocyte colony stimulating factor Granulocyte-macrophage colony stimulating factor Leukaemia inhibitory factor Erythropoietin Ciliaryneurotrophic factor TNF family Tumour necrosis factor-α and –β

Notch信号通路研究进展

224 中国医药生物技术 2009年6月第4卷第3期Chin Med Biotechnol, June 2009, V ol. 4, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2009.03.012 · 综述·Notch信号通路研究进展 王利祥,华子春 1917 年,Morgan 及其同事在果蝇体内发现一种基因,因其功能部分缺失可导致果蝇翅缘出现缺口,故命名该基因为 Notch。随后的研究发现,Notch 从无脊椎动物到脊椎动物的多个物种中表达,其家族成员的结构具有高度保守性,在细胞分化、发育中起着关键作用。迄今研究已阐明 Notch 信号通路的主要成员及核心转导过程,然而随着研究的深入,人们逐渐认识到该通路实际上处于十分复杂的调控网络之中,而这与其在发育过程中功能的多样性相符合。本文结合最新进展,系统阐述 Notch 信号通路的组成,功能,作用机制及调控,并揭示该通路异常与疾病的联系。 1 Notch 受体 Notch 受体是一个相对分子量约为 30 000 的 I 型膜蛋白,由胞外亚基和跨膜亚基组成,2 亚基之间通过 Ca2+ 依赖的非共价键结合形成异源二聚体。胞外亚基包含一组串联排列的 EGFR 和 3 个家族特异性的 LNR 重复序列。EGFR 在 Notch 受体与配体的结合中起关键作用,在果蝇中,Notch 受体的第 11 位和 12 位 EGFR 介导了其与配体的结合。LNR 位于 EGFR 的下游,富含半胱氨酸,介导了 2 亚基之间 Ca2+ 依赖的相互作用。跨膜亚基包括跨膜区、RAM 序列、锚蛋白重复序列、核定位序列、多聚谷氨酰胺序列以及 PEST 序列。RAM 结构域是 Notch 信号效应分子 CBF1/RBPJk 主要的结合部位。ANK 重复序列结构域是 Deltex、Mastermind 等的结合部位,这些蛋白对Notch 信号通路有修饰作用。PEST 结构域与泛素介导的Notch 胞内段降解有关[1]。 2 Notch 配体 Notch 配体与受体一样为 I 型跨膜蛋白。果蝇 Notch 配体有 2 个同源物 Delta 和 Serrate,线虫的 Notch 配体为 Lag 2,故又称 Notch 配体为 DSL 蛋白。脊椎动物体内也发现了多个 Notch 配体,与 Delta 同源性高的称为Delta 样分子,与 Serate 同源性高的被称作 Jagged。目前,发现人的 Notch 配体有 D ll l、3、4和 Jagged l、2。配体胞外 DSL 结构域在进化中高度保守,是配体与受体结合、激活 Notch 信号所必需的。Notch 配体的胞内域较短,仅70 个左右氨基酸残基,功能尚未阐明。近来研究发现,Delta 1 的胞内域能够诱导细胞的生长抑制[2]。有人推测,配体胞内段可能类似与受体胞内段,具有信号转导功能,但具体机制有待进一步研究。3 Notch 信号传递与效应因子 迄今研究发现主要有 6 种信号通路在多细胞生物的生长中发挥关键作用,分别是刺猬、骨形态发生蛋白、无翅、类固醇激素受体、Notch 和受体酪氨酸激酶。Notch 相对于其他信号通路结构较简单,没有第二信使的参与。现有研究提出了 Notch 信号活化的“三步蛋白水解模型”[3]。首先,Notch 以单链前体模式在内质网合成,经分泌运输途径,在高尔基体内被 Furin 样转化酶切割成相对分子质量为180 000 含胞外区的大片段和 120 000 含跨膜区和胞内区的小片段。两者通过 Ca2+依赖性的非共价键结合为异源二聚体,然后被转运到细胞膜。当 Notch 配体与受体结合,Notch 受体相继发生 2 次蛋白水解。第一次由 ADAM 金属蛋白酶家族的 ADAM 10/Kuz 或 ADAM 17/TACE 切割为 2 个片段。N 端裂解产物(胞外区)被配体表达细胞内吞,而 C 端裂解产物随后由早老素 1/2,Pen-2,Aph1 和Nicastrin 组成的γ-促分泌酶复合体酶切释放 Notch 受体的活化形式 NICD。 经典的 Notch 信号通路又称为 CBF-1/RBP-Jκ依赖途径。CBF-1/RBP-Jκ本身是 1 个转录抑制因子,能够特异性地与 DNA 序列“CGTGGGAA”相结合,并招募 SMRT,SKIP,I/II 型组蛋白去乙酰化酶等蛋白形成共抑制复合物,抑制下游基因的转录。当 Notch 信号激活后,NICD 通过上述酶切反应被释放进入胞核,通过 RAM 结构域及 ANK 重复序列与 CBF-1/RBP-Jκ结合使共抑制复合物解离,并募集 SKIP,MAML 1 组成共激活复合体,激活下游基因的转录。Notch 信号的靶基因多为碱性螺旋-环-螺旋转录抑制因子家族成员,如哺乳动物中的 HES、非洲爪蟾中的XHey-1,以及近来发现的 BLBP [3]。此外,存在非CBF-1/RBP-Jκ依赖的 Notch 信号转导途径。最近有研究报道,果蝇 Notch 结合蛋白 Deltex 是某些组织特异性非 Su (H)依赖性信号所必需的,同时发现 Deltex 也具有拮抗Notch 的功能 [4]。 4 Notch 信号途径功能 Notch 信号途径的功能最初是在果蝇神经系统发育的 基金项目:国家自然科学基金(30425009,30730030);江苏省自然科学基金(BK2007715) 作者单位:210093 南京大学医药生物技术国家重点实验室 通讯作者:华子春,Email:zchua@https://www.wendangku.net/doc/e76282804.html, 收稿日期:2009-02-01

免疫学知识点梳理

免疫学知识点梳理 第一章绪论 1. 免疫的概念 2.固有免疫和适应性免疫的特点比较。 3.免疫的三大功能防御、自稳、监视,相应的病理反应为超敏及免疫缺陷、自身 免疫病、恶性肿瘤。 4.免疫系统的组成 5.简述中枢免疫器官和外周免疫器官的组成 6.淋巴细胞再循环的意义。 7.主要的免疫细胞及免疫分子有哪些。 8.克隆选择学说 第二章抗原 1. 抗原的定义 2.完全抗原与半抗原的定义及特点 3.抗原表位的分类(线性表位-T细胞和构象表位-B细胞)、抗原结合价 4.共同抗原与交叉反应,交叉抗原的生物学意义。 5.决定抗原免疫原性的因素。(理化因素、宿主因素、免疫途径及方法) 6.抗原的种类: 1)抗体产生是否对T细胞依赖:TD抗原、TI抗原 2)抗原与机体的亲缘关系:异嗜性抗原、异种抗原、同种异型抗原、自身抗原3)抗原提呈细胞内抗原的来源:内源性抗原、外源性抗原 7.非特异性免疫刺激剂:免疫佐剂、超抗原、丝裂原第三章抗体 1.抗体和免疫球蛋白的定义。 2.抗体的基本结构: 重链(H链)和轻链(L链); 可变区(V区):超变区(CD1-3)和骨架区(FR1-4) 恒定区(C区):C H1-4;C L 铰链区:CH1与CH2之间。 结构域和功能区:VH和VL抗原结合位点;CH1和CL为Ig同种异型遗传标志所

在;CH2和CH3为补体C1q结合位点;CH3和CH4能与多种细胞表面的Fc 受体结合,产生免疫效应。 3.免疫球蛋白的水解片段: 木瓜蛋白酶水解片段:2个Fab(抗原结合片段), 1个Fc (可结晶片段) 胃蛋白酶水解片段:1个Fab'段,多个pFc段 4.抗体的类型:根据重链C区氨基酸组成的差别分为,IgG、IgA、IgM、IgD、Ig巳 型:根据轻链C区氨基酸组成的差别分为,入和K 5.抗体三类不同的抗原决定基: 同种型:同一种属所有个体Ig分子共有的抗原特异性标志。同种异型:同一种属不同个体间Ig 分子具有的不同抗原特异性标志。存在于Ig C区和V区。 独特型:同一个针对不同抗原所产生的Ig分子V区所特有的抗原表位。存在于Ig重链和轻链的V区。 6.抗体的主要功能 V区特异性识别、结合抗原; C区,与具有Fc受体的细胞结合;激活补体,发挥溶解细胞的活性; 介导免疫细胞活性(ADCC调理作用、超敏反应、激活巨噬细胞和肥大细胞);7.五类免疫球蛋白的特性与功能IgG:唯一能通过胎盘的抗体。 血清含量最高,占总量的75-80%,半衰期长,能通过经典途径激活补体;主要的抗感染抗体,参与II、III 型超敏反应。 IgM: 五聚体,分子量最大,其激活补体、结合抗原、免疫调理作用比IgG 强,占血清免疫球蛋白总量的5-10%。 IgM 的特点:个体发育中最早产生的抗体;是抗原刺激后出现最早的抗体;是BCR的主要成分;参与II、III型超敏反应。 IgA:分血清型和分泌型两种。是外分泌液中的主要抗体。

医学免疫知识总结

免疫超级无敌复习 名词解释 1.Adjuant佐剂* 预先或与抗原同时注入体内,可增强机体对该抗原的免疫应答能力或改变免疫应答类型的非特异性免疫增强性物质。 2.Autoimmunity自身免疫 是机体免疫系统对自身细胞或自身成分所发生的免疫应答,产生自身抗体和/或自身反应性T细胞的正常生理现象,存在于所有的个体 3.MALT 粘膜相关淋巴组织* 指呼吸道、胃肠道及泌尿生殖道粘膜固有层和上皮细胞下散在的无被膜淋巴组织,以及某些带有生发中心的器官化的淋巴组织 4.mAb单克隆抗体 由K?hler和Milstein建立的杂交瘤技术制备单克隆抗体,使经过筛选和克隆化的杂交瘤细胞仅能合成及分泌抗单一抗原表位的特异性抗体。 5.pAb多克隆抗体 天然抗原分子中常含有多种不同抗原特异性的抗原表位,以该抗原物质刺激机体免疫系统,体内多个B细胞克隆被激活,产生的抗体中实际上含有针对多种不同抗原表位的免疫球蛋白。 6.MHC主要组织相容性复合体 指存在同一染色体上编码主要组织相容性抗原的基因群,具有控制免疫应答和同种移植排斥反应等复杂功能。 7.SAg超抗原 某些抗原性物质,其抗原作用不受MHC限制,无抗原特异性,只要极低浓度,即可激活多克隆淋巴细胞(2-20%),产生强烈的免疫应答。 8.SLE 系统性红斑性狼疮 是典型的全身性自身免疫性疾病,患者的皮肤、肾和脑等均可发生病变,多发生在20 - 30岁女性9.TSA 肿瘤特异性抗原 是指肿瘤细胞特有的或存在于某些肿瘤细胞而不存在于正常细胞的新抗原 10.TAA 肿瘤相关抗原 是指肿瘤细胞和正常细胞组织均可表达的抗原,只是其含量在细胞癌变时明显增高 11.Clonal anergy克隆无能 T,B细胞缺乏第二活化信号,不能有效活化也不能对相应的特异性抗原或MHC/抗原肽复合物产生正免疫应答。 12.ELISA 酶联免疫吸附实验 是酶免疫测定技术中应用最广的技术,其基本方法是将已知的抗原或抗体吸附在固体载体表面,使抗原抗体反应在固相表面进行,通过洗涤将固相上的抗原抗体复合物与液相中的游离或分开13.HLA 人类白细胞抗原 人的MHC称为HLA,其主要中能是以其产物提呈抗原肽进而激活T淋巴细胞。因此,MHC在启动适应性免疫应答中起重要作用 14.Cytokine细胞因子* 由免疫原、丝裂原或其他因子刺激细胞所产生的低分子量可溶性蛋白质、微生物信息分子,具有调节固有免疫和适应性免疫应答,促进造血,以及刺激细胞活化、增殖和分化等功能

ERK5信号通路研究现状

World Journal of Cancer Research 世界肿瘤研究, 2014, 4, 41-46 Published Online October 2014 in Hans. https://www.wendangku.net/doc/e76282804.html,/journal/wjcr https://www.wendangku.net/doc/e76282804.html,/10.12677/wjcr.2014.44008 Review of the ERK5 Signaling Pathway Research Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu# Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang Email: 4567436@https://www.wendangku.net/doc/e76282804.html,, #ouyangww103173@https://www.wendangku.net/doc/e76282804.html,, #lbgymaaaa@https://www.wendangku.net/doc/e76282804.html, Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/e76282804.html,/licenses/by/4.0/ Abstract Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relation-ship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future. Keywords ERK5, Signaling Pathways, MAPK ERK5信号通路研究现状 罗松*,苏胜发,欧阳伟炜#,卢冰# 贵阳医学院肿瘤学教研室,贵阳 Email: 4567436@https://www.wendangku.net/doc/e76282804.html,, #ouyangww103173@https://www.wendangku.net/doc/e76282804.html,, #lbgymaaaa@https://www.wendangku.net/doc/e76282804.html, 收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日 *第一作者。 #通讯作者。

Notch信号通路在血管生成中的作用研究进展

四综述四 D O I :10.3760/c m a .j .i s s n .1673-436X.2012.004.015基金项目:国家自然科学基金资助项目(81170036)作者单位:410011长沙, 中南大学湘雅二医院呼吸内科通信作者:陈平,E m a i l :p i n g c h e n 0731@s i n a .c o m N o t c h 信号通路在血管生成中的作用研究进展 纵单单 陈平 陈燕 ?摘要? 血管生成存在于机体生长发育的各个阶段三N o t c h 信号是细胞间相互作用的重要信使,大量的研究发现N o t c h 信号在细胞分化及血管生成方面发挥重要的调控作用三N o t c h 信号参与生理性血管生成可能与以下机制有关:调节尖细胞与茎细胞的分化,调节动静脉分化二内皮祖细胞二血管壁细胞二 血管内皮生长因子二一氧化氮以及与其他信号通路相互作用三此外,N o t c h 信号在肿瘤以及损伤后组织修复等病理性血管生成中亦发挥重要作用三明确N o t c h 信号的作用机制对疾病的治疗有重要意义三 ?关键词? N o t c h 信号通路; 血管生成;内皮祖细胞;血管内皮生长因子;肿瘤R e s e a r c ha d v a n c e o fN o t c h s i g n a l i n g i nm o d u l a t i o n o f a n g i o g e n e s i s Z O N GD a n -d a n ,C H E NP i n g ,C H E N Y a n .D e p a r t m e n t o f R e s p i r a t o r y M e d i c i n e ,t h eS e c o n d X i a n g y a H o s p i t a l ,C e n t r a lS o u t h U n i v e r s i t y ,C h a n g s h a 410011,C h i n a C o r r e s p o n d i n g a u t h o r :C H E NP i n g ,E m a i l :p i n g c h e n 0731@s i n a .c o m ?A b s t r a c t ? A n g i o g e n e s i s e x i s t s i n v a r i o u s s t a g e s o f t h e g r o w t h a n d d e v e l o p m e n t o f t h e b o d y .N o t c h s i g n a l i n g i s a c e l l -c e l l s i g n a l i n gp a t h w a y .R e c e n t s t u d i e sh a v e s h o w n t h a tN o t c hs i g n a l i n gp l a y s a r o l e i n s e v e r a lb i o l o g i c p r o c e s s e s ,s u c ha sc e l ld i f f e r e n t i a t i o na n da n g i o g e n e s i s .N o t c hs i g n a l i n g i n v o l v e di n p h y s i o l o g i c a la n g i o g e n e s i s m a y b er e l a t e d t o t h ef o l l o w i n g m e c h a n i s m s :r e g u l a t e st h et i p /s t a l lc e l l d i f f e r e n t i a t i o n ,a r t e r i a l - v e n o u s d i f f e r e n t i a t i o n ,e n d o t h e l i a l p r o g e n i t o r c e l l s ,m u r a l c e l l s ,v a s c u l a r e n d o t h e l i a l g r o w t h f a c t o r ,n i t r i c o x i d e a n d c o o p e r a t e sw i t ho t h e r s i g n a l i n gp a t h w a y s .I na d d i t i o n ,N o t c h s i g n a l i n gp l a y sa ni m p o r t a n t r o l e i n p a t h o l o g i c a l a n g i o g e n e s i s ,s u c ha st u m o ra n g i o g e n e s i sa n di m p a i r s r e p a r a t i v e a n g i o g e n e s i s a f t e r i s c h e m i a .T h e r e f o r e ,a c l e a rm e c h a n i s mo f t h eN o t c h s i g n a l i n gp a t h w a y c a n p r o v i d e a v a l u a b l e t h e r a p e u t i c s t r a t e g y f o r t h e d i s e a s e s .?K e y w o r d s ? N o t c h s i g n a l i n g p a t h w a y ;A n g i o g e n e s i s ;E n d o t h e l i a l p r o g e n i t o r c e l l s ;V a s c u l a r e n d o t h e l i a l g r o w t h f a c t o r ;T u m o r N o t c h 信号通路最初发现于果蝇, 是一条高度保守的信号传导途径,广泛存在于各种生物体内,在机体生长发育过程中起到关键作用,从多方面调控细胞增殖二分化及凋亡三近年来大量研究表明 N o t c h /D l l 4信号通路在血管生成中起到重要作用三本文就N o t c h 通路在生理性及病理性血管生成中的作用及其调控机制作一综述三 1 N o t c h 信号通路组成 N o t c h 信号通路是一条高度保守的信号转导途径,由胞外配体二跨膜受体二D N A 结合蛋白及靶基因四部分组成三哺乳动物体内含4种同源N o t c h 受体(N o t c h 1~4)及5种同源配体(D l l 1二D l l 3二D l l 4二 J a g 1二J a g 2)[1 ]三N o t c h 受体是Ⅰ型单跨膜蛋白,包括胞外部分二跨膜部分及胞内部分三N o t c h 蛋白的 胞外部分均含有36个串联排列的表皮生长因子 (e p i d e r m a l g r o w t h f a c t o r ,E G F )样重复系列以及3个富含半胱氨酸的L N R 样重复序列三部分E G F 样序列可与相邻细胞的配体结合,L N R 样重复序列 则调节受体胞内与胞外区域的相互作用[ 2-3] 三跨膜部分主要由C a 2+ 依赖的非共价键结合形成的异源二聚体构成三胞内部分由R AM 结构域(R B P 结合 区),核定位序列N L S ,7个锚蛋白重复序列A N K 结构域,富含脯氨酸二谷氨酸二丝氨酸及苏氨酸的P E S T 结构域,以及翻译启动区T A D 五部分组成三N o t c h 配体也是表达于细胞表面的Ⅰ型跨膜蛋白,配体胞外D S L 区域负责与N o t c h 受体及部分E G F 样重复序列结合[1,3 ]三N o t c h 信号由相邻两个细胞 的N o t c h 受体和配体相互作用而激活, 受体与配体结合导致受体构象发生改变,跨膜部分被连续切割, 四 992四国际呼吸杂志2012年2月第32卷第4期 I n t JR e s p i r ,F e b r u a r y 2 012,V o l .32,N o .4

ThTh细胞基础知识

Th1/Th2细胞基础知识 1)Th1/Th2 分类: 早在1986年,Mosmann等应用Th细胞克隆培养技术和细胞因子产生的不同,已发现小鼠CD4阳性细胞群是一个不均一的亚群,可分为Th1和Th2两个功能不同的独立亚群(见表1)。后来在人类的CD4阳性细胞群中也发现了Th1,Th2两等, ?个功能细胞亚群(见表2)。T h1细胞主要分泌IL-2、IL-12、IFN-γ和TNF-β/ 介导与细胞毒和局部炎症有关的免疫应答,参与细胞免疫及迟发型超敏性炎症的形成,故亦称为炎症性T细胞,可被视为相当于TDT H细胞。Th1细胞在抗胞内病原体(病毒、细菌及寄生虫等)感染中发挥重要作用。在胞内细菌感染时,Th1细胞优先发育并引发吞噬细胞介导的宿主防御应答。Th1细胞持续性强应答,可能与器官特异性自身免疫病、接触性皮炎、不明原因的慢性炎症性疾病、迟发型超敏反应等有关。Th2细胞:Th2细胞主要分泌IL-4、IL-5、IL-6和IL-10,其主要功能为刺激B 细胞增殖并产生抗体,与体液免疫相关。在T/B细胞比例较低时,Th1细胞也可能辅助B 细胞产生抗体(IgM、IgG2a和IgA类)。在对蠕虫感染和环境变应原的应答中,主要是Th2细胞参与,以介导体液免疫应答为主。过度的Th2细胞应答可能在遗传易感的过敏性特应症中起重要作用。 两类CD4+Th细胞对细胞因子的反应性各异:IFN-γ可诱导Th1细胞分化,但抑制Th2细胞增殖;IL-4诱导Th2细胞分化,但可与IL-13等一起抑制Th1细胞功能;IL-2则可同时引起Th1和Th2细胞增殖。 ,可下调APC和Th1细胞活性,在诱导免疫耐受中起重要作用。?除上述的Th1和Th2 细胞外,还有一类产生Th1和Th2样混合性细胞因子的Th0细胞。Th0亚群可能是从Th 前体向Th1或Th2细胞分化过程中的一个中间阶段。此外,期有人报道还存在CD4+Th3细胞,其主要分泌TGF-

信号通路研究思路

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因

脂肪细胞的基础知识

脂肪细胞的基础知识 脂肪细胞的生长全过程及其形态变化脂肪母细胞,是指能向脂肪细胞分化的ADSCs在激素、生物活性因子、寒冷等因素刺激下均能逐渐分化成为单能干细胞。它可保持着干细胞增殖活跃的特性,脂肪母细胞再进一步分化为前脂肪细胞,即通常人们所说的脂肪细胞前体。前脂肪细胞再经历细胞融合、接触抑制和克隆扩增等步骤启动向成熟脂肪细胞分化,并在胰岛素、地塞米松等诱导剂作用下完成向成熟脂肪细胞的分化。全过程可以表示为:多能干细胞——脂肪母细胞——前脂肪细胞——不成熟脂肪细胞——成熟脂肪细胞。生长期前脂肪细胞的形态与成纤维细胞相似,经诱导分化,其细胞骨架和细胞外基质发生变化,开始进入不成熟细胞向成熟细胞转变。细胞形态由成纤维细胞样逐渐趋于类圆或圆形,胞体逐渐增大,胞质中开始出现小脂滴,脂质开始累积,以后小脂滴增多并融合为较大的脂滴,可经油红“O”染色等方法于显微镜下显色,从而获得成熟脂肪细胞的形态特征。此时的细胞无分裂增殖能力,为脂肪细胞分化的终末阶段。 张高娜,梁正翠.动物脂肪细胞的研究进展[J].饲料工业,2009,30(2):42-44. 脂肪细胞由起源于中胚层的间充质干细胞逐步分化形成,按间充质干细胞→脂肪母细胞→前脂肪细胞→不成熟脂肪细胞→成熟脂肪细胞的过程发展。前脂肪细胞在多种转录因子调控下,激活脂肪组织相关基因,并在这些基因的顺序性调控下,经一系列复杂的步骤分化为成熟脂肪细胞。 张艳.脂肪细胞分化过程中的分子事件[J].儿科药学杂志,2008,14(1):56-57.

间充质干细胞 概念: 不同文献中,分别命名为抽脂处理细胞(processed lipoaspirate cells, PLA),脂肪基质微管碎片细胞(stromal vascularfraction cells, SVF),脂肪组织源基质细胞(adipose-tissue derived stromal cells, ATSCs),脂肪源中胚层干细胞(adipose-derived mesodermal stem cells, ADMSCs)等。这些不一致的名称均指从脂肪组织中分离的、可在体外大量扩增并具有多向分化潜能的细胞。 李惠侠,屈长青. 脂肪组织源性干细胞研究进展[J]. 生理科学进展,2007,38(2) 脂肪细胞是由起源于中胚层的间充质干细胞(mesenchymal stem cell, MSC)逐步分化、发育而来,MSC主要分布于脂肪组织和骨髓中。脂肪细胞不同发育阶段的两类细胞系为多能干细胞系和前体脂肪细胞系,前者为不定向的细胞系,能转变为稳定的脂肪细胞、肌细胞和软骨细胞,后者为定向的细胞系,是目前体外研究脂肪细胞分化应用最为广泛的细胞系。 庞卫军,李影. 脂肪细胞分化过程中的分子事件[J]. 细胞生物学杂志,2005,27: 497-500. 脂肪来源的间充质干细胞(adipose tissue derived mesenchymal stem cells, ADMSCs) 间充质干细胞(mesenchymal stem cells, MSCs)具有自我更新及多向分化潜能,是一种 具有潜力的组织工程种子细胞。目前研究得比较多的是骨髓来源的MSCs,但骨髓中的间 充质干细胞数量很少(约占细胞总数的1/105),且存在取材困难等问题。MSCs广泛分布于 其他组织中,包括肌肉、血管、肝脏、胰腺和脂肪等。 ADMSCs表面有CD29、CD44、CD71、CD90、CD105/SH-2、SH-3、STRO-1等多 种抗原标志。 李冬艳,宇丽. 脂肪来源的间充质干细胞分离方法的改进[J]. 暨南大学学报(医学版),2007,28(6). 脂肪源性干细胞(adipose-derived stem cells,ADSCs) Zuk等从脂肪组织中分离出了一种成纤维细胞样细胞,它与骨髓间充质干细胞(MSCs)形态相似,称之为脂肪干细胞(ADSCs),平均每300 ml脂肪组织可获得2×108~ 6×108个这样的细胞。ADSCs和MSCs具有相同的表现型,对CD29、CD44、CD71、 CD70、CD105/SH2和SH3为阳性反应,对CD31、CD34和CD45为阴性反应。此外, 它们还具有各自特征性的表达分化抗原:ADSCs具有特征性表达分化抗原CD49d,而MSCs具有特征性表达分化抗原CD106。 张高娜, 梁正翠. 动物脂肪细胞的研究进展[J]. 饲料工业,2009,30(2) 间充质干细胞(mesenchymal stem cells,MSCs)是一类具备干细胞特点的细胞系,具有自我更新能力、长期的活性和多系分化潜能。 脂肪来源的间充质干细胞(adipose tissue-derived mesenchymal stem cells,ADSCs),以其取材方便、来源丰富等多种优势逐渐取代骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells,BMSCs)。 免疫表型:研究发现ADSCs主要表达CD13、CD44、CD73、CD90、CD105、CD106、CD166、CD29、CD49e和HLA-ABC,而不表达CD34、CD3、CD19、CD45、CD14、CD117、CD31、CD62L、CD95L和HLA-DR。这个结果和其他的MSCs几乎一致。但ADSCs与BMSCs也有差别:大部分BMSCs表达CD10,而表达CD10的ADSCs仅占5%~20%;几乎所有的ADSCs表达CD49f和CD54,而BMSCs极少表达。 周苏娜,张明鑫. 脂肪来源的间充质干细胞的生物学特征及临床应用[J]. 中国现代普通外科进展,2009,12(1). 不同细胞的表面标志是不同的,脂肪干细胞的表面标记为:CD9、CD10、CD13、CD29、CD10、CD44、CD49e、CD49d、CD54、CD55、CD59、CD90、CD105、CD107、CD146、

免疫学模拟题知识分享

免疫学模拟题

《医学免疫学》模拟试题(一) 一、单选题(只许从每题备选答案种选择一个最佳答案。每题1分,共40分) 1、外周免疫器官不包括() A、胸腺 B、淋巴结 C、脾 脏 D、粘膜相关淋巴组织 2、人B细胞分化成熟的部位是在() A、胸腺 B、脾脏 C、骨 髓 D、法氏囊 3、木瓜蛋白酶水解IgG所获片段中,能与抗原特异结合的是 () A、Fab段 B、Fc段 C、F(ab)2 段 D、pFc段 4、参与新生儿溶血症的Ig是() A、IgG B、IgA C、 IgM D、IgD 5、能抵抗蛋白酶水解的Ig是() A、IgG B、sIgA C、 IgM D、IgE 6、以下关于IgG 生物学特性的错误叙述是() A、能通过胎 盘B、能激活补体 C、是参与I 型超敏反应的主要 Ig D、能发挥调理作用 7、参与旁路激活途径的补体成份是() A、C1 B、C2 C、 C3 D、C4 8、补体经典激活途径中形成的C3转化酶是() A、C4b2b B、C3bBb C、 C4b2b3b D、C3bnBb 9、下列补体裂解片段中具有调理作用的是() A、C3a B、C3b C、 C5a D、C5b 10、同时参与经典、旁路及MBL三条激活途径的补体成分是() A、C1 B、C2 C、 C3 D、C4 11、细胞因子(CK)的生物学作用特点不包括() A、具有高效性 B、为特异性作用 C、多数在局部发挥作用 D、对细胞的作用不受MHC限制

12、能直接杀伤肿瘤细胞的细胞因子是() A、TNF B、IFN C、IL- 1 D、IL-2 13、干扰素(IFN)不具有() A、抗病毒作用 B、抗肿瘤作用 C、免疫调节作用 D、炎症介质作用 14、以下关于CD8分子的叙述,正确的是() A、是辅助T细胞(Th)的膜分子 B、是细胞毒T细胞(Tc)的膜分子 C、是Th细胞识别抗原的辅助受体 D、是 HIV的受体 15、经典的HLA I类基因是() A、HLA-DP B、HLA-DQ C、HLA- C D、HLA-DR 16、HLA复合体位于人的哪号染色体上() A、1号染色体 B、2 号染色体 C、6号染色 体 D、17号染色体 17、HLAΠ类抗原主要分布于() A、各种有核细胞,包括血小板和网织红细胞 B、各种白细胞和红细胞 C、淋巴细胞、粒细胞、红细胞及抗原提呈细胞(APC) D、B细胞、单核/巨噬细胞(Mφ)、树突状细胞(DC)及活化T细胞 18、T细胞的抗原识别受体是() A、TCR B、CD3分子 C、补体受体 D、细胞因子受体 19、B胞胞不具有的表面标志是() A、CD3分子 B、BCR C、Fc受体 D、补体受体(CR) 20、能特异杀伤靶细胞并有MHC限制性的是() A、Mφ B、Tc 细胞 C、NK细 胞 D、B 细胞 21、专职性APC不包括() A、DC B、Mφ C、B细 胞D、NK细胞 22、不同物种间共有的抗原称为() A、TD抗原 B、TI抗原 C、异嗜性抗 原 D、异种抗原 23 、胸腺依赖性抗原(TD-Ag)是指( ) A、来源于胸腺的抗原 B、刺激B细胞产生抗体需T细胞辅助的抗原 C、在胸腺中加工处理的抗原 D、T细胞在胸腺内发育过程中获得的抗原

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。 当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因突变(ATM)以及DNA-PK。相对而言,MEK1/2

相关文档
相关文档 最新文档