文档库 最新最全的文档下载
当前位置:文档库 › 聚乳酸材料的整理

聚乳酸材料的整理

聚乳酸材料的整理
聚乳酸材料的整理

聚乳酸热降解动力学

聚乳酸属于对热十分敏感的物质, 当温度超过200 °C时会出现

明显的热降解。热降解的速率取决于降解的时间、温度、低分子量物质的含量以及催化剂的浓度等。由于聚乳酸的熔点为180 °C左右,

因此其加工温度要超过185~ 190 °C。而过高的温度下会引起热降解,导致聚乳酸分子量和性能的降低, 因此聚乳酸的加工温度范围较窄。

实验部分

聚乳酸样品为自制, 其粘均分子量为20 万左右, 催化剂含量为0. 5%。实验对该样品在纯化前先将聚乳酸样品溶解于氯仿中, 过滤

除去其中的杂质, 再将滤液倒入甲醇溶液中以沉淀出聚合物, 得到

的滤饼用甲醇洗涤, 然后置于真空干燥箱中于50 °C下干燥至恒重, 得到所需产品。将纯化前后的聚乳酸样品用铝箔包裹后放入玻璃管中, 在抽真空的条件下将玻璃管封闭, 然后放进恒温干燥箱中, 分别在180、190、200、210 °C下进行热降解实验。每隔一段时间(10~ 120 m in) 取样分析, 在37 °C下以四氢呋喃为溶剂用乌氏粘度计测定。聚乳酸热降解过程中主要考虑分子内的酯交换反应及其逆反应

结论

(1) 初步建立了聚乳酸热降解模型, 该模型中考虑了分子内的酯交

换反应及其逆反应, 但由拟合的结果发现, 逆反应的速率常数比正

反应的要小得多, 因此在本实验条件下可以忽略逆反应。

(2) 温度、时间以及催化剂浓度等因素对聚乳酸热降解过程均有较大

的影响。热降解的温度越高,聚乳酸相对分子质量降低的速率越大; 同样, 降解时间越长其剩余相对分子质量越低。但降解过程主要

集中在前期(约0~ 30 m in) , 此阶段聚乳酸降解速度非常快, 而在后一阶段, 降解的幅度变慢, 相对分子质量的变化较小。催化剂促进了热降解反应, 浓度越大降解越明显。

(3) 拟合得到了两种情况下聚乳酸热降解反应的活化能, 其中经过纯化处理后降解反应的活化能要高于未处理的, 这也表明催化剂降低了反应的活化能。

补充:聚乳酸的降解

从物理角度看, 聚乳酸的降解有均相和非均相降解, 非均相降解指降解反应发生在聚合物表面, 而均相降解则是降解反应发生在聚合物内部。从化学角度看, 主要有3种方式降解:(1)主链降解生成低聚体和单体;(2)侧链水解生成可溶性主链高分子;(3)交链点裂解生成可溶性线性高分子。

对于降解动力学, 当PLA植人体内的同时, 降解反应发生,但是在最初阶段降解反应进行比较缓慢,产生的酸性小分子可以通过代谢而排出体外, 随着时间的推移, 降解反应逐步加速, 产生的酸性小分子就来不及被代谢而积累, 造成局部酸浓度过大, 它们又会加速催化材料的降解, 即发生自催化效应。但人们近来又发现PGA/PLA(聚乙交酯/聚乳酸)共聚物大尺寸的材料, 存在不均匀降解, 聚合物内部出现空洞,对此有人解释为加工过程中皮层效应所致囚, 但这与自催化效应相矛盾。对于聚乳酸的降解速度, 聚乳酸的聚合结构对其影

响很大, 包括化学结构、物理结构、表面结构等, 由于聚酝类高分子含有易水解的化学键, 有较快的降解速度。但当其固态结构不同时, 不同聚集态的降解速度为:橡胶态>玻璃态> 结晶态。其他影响降解速度的因素有聚合物相对分子质量、共聚物组成、几何形状、加工条件、温度以及酶、PH值、微生物超声波、电磁等外部环境。

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

生物降解高分子材料——聚乳酸

生物降解高分子材料——聚乳酸 摘要:生物降解材料聚乳酸的性质及其制备方法的研究进程,其中主要介绍了通过开环聚合反映制取聚乳酸的方法以及聚乳酸易降解的特性,此外还讲了我国在聚乳酸方面的研究,最后介绍了聚乳酸在医药等方面的重大应用以及聚乳酸的发展前景。 关键词:环境材料生物降解聚乳酸前景 正文: 人类经济和社会的发展常常以扩大开发自然资源和无偿利用环境作为发展模式,这一方改造了空前巨大的物质财富和前所未有的社会文明,另一方面也造成了全球性自然环境的破坏。资源与能源是制造材料和推动材料发展的两大支柱。同时,材料的生产和使用过程也会带来众多的环境问题。因而,传统材料的生态化和开发新型生态材料以缓解日益恶化的环境问题,即材料与环境如何协调发展的问题日益受到人们重视,出现了“环境材料(ecomaterial)”的概念和环境材料学这一新兴的交叉学科,要求材料在满足使用性能要求的同时具有良好的全寿命过程的环境协调性,赋予材料及材料产业以环境协调功能。环境材料是未来新材料的重要方面之一。开发既有良好的使用性能,又具有较高的资源利用率,且对生态一步发展,能够更有效地利用有限的资源和能源,尽可能地减少环境负荷,实现材料产业和人类社会的可持续发展。 随着人类驾驭自然的本领按几何级数增长,向自然环境摄取的物质和抛弃的废弃物就越多。人类对自然环境的影响和干预越大,自然

环境对人类的反作用就越大[1]。当自然环境达到无法承受的程度时,在漫漫岁月里建立起来的生态平衡,就会遭到严重的破坏。材料的性能在很大程度上决定于环境的影响,环境包括“社会环境”和自然环境。其中人所组成的社会因素的总体称为社会环境。自然因素的总体称为自然环境,目前认为是以大气、水、土壤、地形、地质、矿产等一次要素为基础,以植物、动物、微生物等作为二次要素的系统的总体。为了得到更好的环境,开始从不同的环境材料开始研究.。 一、聚乳酸的合成与制备方法 乳酸的直接缩合是作为早期制备PLA的简单方法,但一般只能得到低聚物(数均分子量小于5000,分子量分布约2.0),而且聚合温度高于180℃时,通常导致产物带色。到目前为止,PLA主要是通过LA 的开环聚合制得。依据引发剂的不同,LA的开环聚合可分为正离子聚合、负离子聚合和配位聚合。目前,聚乳酸以乳酸或其衍生物乳酸酯为原料(最常见的是采用左旋乳酸为原料),通过化学合成得到聚合物。高力学性能的聚乳酸是指旋光纯度高的聚L酸(PIJA),单体为£一乳酸。合成工艺大致可以分为间接合成法和直接合成法。直接合成法,也被称作一步聚合法,是利用乳酸直接脱水缩合反应合成聚乳酸。直接法优点操作简单,成本低。缺点乳酸纯度要求高,反应时间长,反应温度控制要求严格[2]。 LA正离子开环聚合是烷氧键断开,每次增长是在手性碳上,因此外消旋成了不可避免的,而且随聚合温度的升高而增加。另外的不足之处在于:能引发LA正离子聚合的引发剂不多,而且难以得到高

聚乳酸

聚乳酸 单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 一、聚乳酸的优点 聚乳酸的优点主要有以下几方面: (1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。 (2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 (3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。 (4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。 (5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。 (6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,

新型可降解材料聚乳酸及如何延长其使用寿命

本科毕业论文(设计) 题目:新型可降解材料聚乳酸及如何延长其使用寿命 系院: 学生姓名: 学号: 专业: 年级: 完成日期: 指导教师:

摘要: 本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命

Abstract : This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook. Key words : of polylactic acid;synthesis;degradation;life

目录 引言 (5) 1 聚乳酸的生产方法 (6) 1.1 直接缩聚法 (6) 1.2 间接聚合法 (6) 2 聚乳酸的基本性能 (6) 3 聚乳酸的降解 (6) 3.1 聚乳酸的降解机理 (6) 3.2 影响聚乳酸降解的因素 (7) 4 提高其使用寿命的主要方法 (7) 4.1 加入抗氧化剂 ..................................... .. (7) 4.2 硝酸表面处理 (8) 4.3 酸性和干燥的环境 (8) 4.4 改变 PLA 的分子结构 (8) 5.结语 (9) 参考文献: (9)

引言 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。

生物医用高分子材料——聚乳酸

生物医用高分子材料——聚乳酸 姓

生物医用高分子材料——聚乳酸 摘要:聚乳酸由于其突出特点如可降解、生物相容性好且对人无毒等而备受重视,并且在生物医学领域的应用中得到了良好的效果。本文对聚乳酸的发展史、现状、性能、优缺点及其等做了简介,并对其未来应用前景做了展望。 关键词:聚乳酸;性能;展望 聚乳酸在医学领域中的发展史 聚乳酸(PLA)是一种具有优良生物相容性和可生物降解的合成高分子材料,它是美国食品和药物管理局(FDA)认可的一类生物医用材料。20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。直到20世纪60年代,科学工作者重新研究PLA对水敏感这一特性时,发现聚乳酸适合作为可降解手术缝合线材料。1966年,Kulkarni等提出:低分子量的PLA能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PLA在生物体内降解后不会对生物体产生不良影响。随后报道了高分子量的PLA 也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。 聚乳酸性能、优缺点 PLA的制备以乳酸为原料进行,较为成熟的方法有两种:一种是乳酸直接缩聚法,另一种是先由乳酸合成丙交酯,再在催化剂的作用下开环聚合。 PLA无毒、无刺激性、具有良好的生物相容性,可生物分解吸收,强度高、不污染环境,可塑性好,易于加工成型。如:在体内,PLA分解成乳酸,再经 酶的代谢生成CO 2和H 2 O,由人体排出,没有发现严重的急性组织反应和毒性反 应。但PLA仍会导致一些温和的无菌性炎症反应。如颧骨固定术后3年产生了无痛的局部肿块,皮下组织出现了缓慢降解的结晶PLLA颗粒引发的噬菌作用,产生组织反应的真正原因没有定论。Sugonuma认为PLA降解所产生的碎片是导致迟发性无菌炎症反应的根本原因。植入部位也决定组织反应类型和强度,皮下植入时炎症发生率较高,在吞噬细胞较少的髓内固定组织反应发生率较低。

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

石墨烯_聚乳酸复合材料的制备与性能研究_谢元仲

石墨烯/聚乳酸复合材料的制备与性能研究 谢元仲,徐淑艳,张维丽,孟令馨 (东北林业大学,哈尔滨150040) 摘要:目的制备具有优异阻隔性能及热稳定性的聚乳酸薄膜材料。方法方法在聚乳酸中添加石墨烯对其进行改性。首先采用改进的Hummers 法将鳞片状石墨制备成氧化石墨烯,继而采用热剥离法将氧化石墨烯还原剥离为石墨烯,然后以聚乳酸为基材,还原后的石墨烯为增强相,采用流延法制备石墨烯/聚乳酸复合薄膜,并测试了其结构、热稳定性以及阻隔性能。结果结果红外分析表明,石墨被强氧化剂氧化后形成了以C —OH ,—COOH ,C —O —C 和C =O 等官能团形式存在的石墨层间化合物,还原后获得的石墨烯剥离充分;石墨烯/聚乳酸复合薄膜的热稳定性能和阻隔性能随石墨烯含量的增加而逐渐增强。结论结论在试验参数范围内,石墨烯/聚乳酸复合薄膜的热稳定性和阻隔性能优于聚乳酸薄膜。关键词:石墨烯;聚乳酸;阻隔性能;热稳定性中图分类号:TB484.9 文献标识码:A 文章编号:1001-3563(2016)09-0007-05 Preparation and Properties of Graphene and Polylactic Acid Composites XIE Yuan-zhong ,XU Shu-yan ,ZHANG Wei-li ,MENG Ling-xin (Northeast Forestry University ,Harbin 150040,China ) ABSTRACT :This work was aimed to obtain polylactic acid films with good barrier properties and thermal stability.Graphene was added into polylactic acid to modify it.Graphene oxide was prepared using the flaky graphite by the improved Hummers method.Graphene oxide was reduced to graphene by thermal stripping method.Grapheme/polylactic acid films were prepared with tape casting method,using polylactic acid as the substrate and graphene as the reinforcement.The structure,thermal stability and barrier properties of films were tested.Infra-red spectrogram showed that graphite intercalation compound with COOH,C =O,C —O —C and C —OH functional groups was formed when graphite was oxidized by the strong oxidizer,and graphene stripped sufficiently by reduction.The thermal stability performance and barrier properties of graphene and lactic acid composite films increased with the increasing graphene content.Within the scope of the test parameters,the thermal stability and barrier performance of the graphene/PLA composite films were better than those of polylactic acid film. KEY WORDS :graphene ;polylactic acid ;barrier properties ;thermal stability 收稿日期:2015-11-13 基金项目:中央高校基本科研业务费专项资金(2572015DY06) 作者简介:谢元仲(1989—),男,山东济宁人,东北林业大学硕士生,主攻包装材料阻隔性能。通讯作者:徐淑艳(1976—),女,辽宁朝阳人,博士,东北林业大学副教授,主要研究方向为包装材料。 包装的主要目的是保护内容物免受外界环境(如氧气、水蒸气、油脂等)的侵害,延长物品保质期,这就要求包装材料具有一定阻隔性能,尤其对氧气和水蒸气的阻隔性[1]。另外,高阻隔包装膜还应具有良好的透光性,内容物可见,能很好地展示商品。聚乳酸是 一种可完全生物降解的绿色包装材料,具有良好的力学性能、生物相容性、透光性,广泛应用于各种包装领域[2—5],但是,纯的聚乳酸膜阻隔性能较差,水蒸气和氧气很容易透过薄膜,且热稳定性差,易分解[6—8]。这些缺点使得聚乳酸无法满足作为高阻隔性包装材料的 包装工程 PACKAGING ENGINEERING 第37卷第9期2016年5月 7

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

生物可降解高分子材料——聚乳酸

生物可降解高分子材料——聚乳酸 摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料. 关键词:绿色高分子;聚乳酸;生物可降解高分子材料 人类在21世纪的最大课题之一是保护环境。橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。 1聚乳酸的基本性质 聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。 聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。 表1聚乳酸的基本性能

2聚乳酸的合成方法 目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。 2.1直接缩聚 乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等. 2.1.1溶液缩聚法 采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高. 2.1.2熔融缩聚法 该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。超过10万的PLLA熔融聚合比溶液聚合操作简单,免去了高沸点溶剂的提纯,是减少辅助剂使用的最佳方法.它有利于降低成本、提高安全性、提高产率、缩短反应时间,是绿色化学的重要研究方向之—【4】. 2.1.3熔融固相缩聚 在聚合温度低于预聚物的熔点,而高于其玻璃化转变温度下进行的一种聚合方法.当熔融聚合产物继续进行固相缩聚时,随结晶度的不断提高,这些低分子

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸介绍

聚乳酸介绍 PLA聚乳酸历史 聚乳酸PLA (Poly lactic acid)一种新的生物塑料材料,早在1932年Dupont的科学家Wallace Carothers在真空中将乳酸进行聚合,产生低分子量的聚合物,但是由于生产成本过高,直到1987年食品公司Cargill开始投资研发新的聚乳酸制造过程,Cargill随后于2001年与Dow合资进行商业化产量名为:Nature-Works的聚乳酸商品。由于聚乳酸材料同时有生体相容性与生物可分解性,因此在所有的可分解性塑料中占有42%的市场。由专利分析来看聚乳酸的用途,2005年DERWENT专利資料库中共有聚乳酸专利1740篇,其中医用专利542篇,设备方面专利517篇,包装方面专利293篇,纤维方面专利419篇。除生物可分解的特性外,聚乳酸的主要优势包括有良好的机械特性与其材料来源,聚乳酸的材料来源为淀粉,在今日原油价格上涨,石油储存量下降的环境之下,除具有环境保护的优势,也同时有能源经济的效益。比较聚乳酸与其他常规塑料的物性发現,聚乳酸的机械性质相當强韧,与聚苯乙烯、聚氯乙烯接近,韧度超过聚丙烯,用于包裝材料、医疗与纤维的潛力相當好,唯一影响其近一步取代塑料包裝材料的障碍是其生产成本,依照制造过程与規模不同,聚乳酸的生產成本目前为 20-28元/公斤,高于目前常规塑料的价格。已商业化生产的生物可分解塑料,可以看出聚乳酸在整個生物可分解塑料占有举足轻重的地位,而Cargill Dow LLC每年14万吨的聚乳酸产量則为世界最高。日本方面三井化學也開始规模化生产,预计该公司2008年聚乳酸的销售量可以超过30000吨。依照Frost Sullivan推测,全世界的生物可分解性塑料在2002年時的市场为12万公吨,到2010年可望成达到每年50.5~70万公吨,而如果按照以上各主要公司所公布的产能扩建预计更是大幅超过此数字,如德国的Inventa Fisher计划将其设备放大至每年80000吨,而Cargill Dow LLC更预计在2009年可以将其聚乳酸产能提升至每年45万公吨,可以看出其強大的商机与市场成长潛力。 什么是生物可分解材料 生物可分解材料(Biodegradable Materials),主要以天然高分子或聚酯种类为基质,一般以可不短重复取得的天然資源,如:微生物、植物、动物,所製成的一种聚合物。传統的塑胶材料不能被微生物分解成H2O和CO2,如:PE、PVC、PS、PP…等。生物可分解材料PLA的制品暴露在空气中时,並不会进行分解。但在有足够的湿度、氧气与适当的微生物条件下.存在的自然掩埋或堆肥环境中经过短短的20~45天,即可被微生物所分解成H2O和CO2,再次回归于自然环境中滋养植物成長。 PLA聚乳酸材料优点 ** 材料天然、无毒,透气性高, PLA制品经由美国FDA认可,可直接与食物接触。 (就算盛裝含有酸性,酒精成份之食材,也不会釋放任何危害人体之物質) ** 使用任何废弃物处理方式(如焚化、掩埋、回收、堆肥)皆不致对环境造成任何影响。 ** 可取代以石油为基質的传统塑胶材料,且有同类传统塑胶制品之物性,使用方法相同。 ** 丢弃后,经堆肥环境及掩埋处理可经由微生物完全分解 100%。

聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

材料化学结课论文汇总

新型可降解材料聚乳酸 摘要:随着时代的进步,科技的发展,我国在各方面都进入了高科技和新型功能材料的领域。比如说在功能材料应用这方面,我国已经引进并且也自己研发了许多新型功能材料,使我们的工业生产和日常生活都得到了实惠,也为我们提供了诸多方便。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。 1 聚乳酸的生产方法 聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。 1.1直接缩聚法 直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。 1.2间接聚合法 间接聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚,没有小分子水生成,所以不需要进行抽真空排除小分子,聚合设备简单,此法所得聚乳酸分

子量高达数万乃至数百万,机械强度高。近年来,为便于工业化生产,主要集中在开环聚合的高效催化体系,新型结构和组成的共聚物的合成等方面的研究,以制备更高分子量的聚乳酸。 2 聚乳酸的基本性能 聚乳酸是其中一种研究较多和性能较好的可生物降解的高分子材料。乳酸有非常好的透明性,可在牛物体内分解、吸收,同时其力学性能可和通用塑料媲美。聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,对人体无害,具有良好的生物相容性。聚乳酸现已成为生物降解医用材料领域中最受重视的材料之一。目前,聚乳酸已被广泛应用于药物控制释放材料、免拆手术缝合线和注射用微胶囊、埋植剂、骨材料、眼科材料等。此外,聚乳酸还可用于农业、包装材料、日用杂品等领域。 3 聚乳酸的降解 乳酸是一种性能优异的生物降解材料,能被酸、碱、生物酶等降解,降解的最终产物是CO2和H2O,对环境无污染。早已公认为是最有前途的医用可降解高分子材料。 3.1聚乳酸的降解机理 PLA作为聚酯类材料,其降解分为简单水解降解和酶催化降解。简单水解降解是酯化反应的逆反应,起始于水的吸收,小分子的水移至样品的表面,扩散进入酯键或亲水基团的周围。在介质中酸、碱的作用下,酯键发生自由水解断裂,样品的数均分子量缓慢降低,当分子量降低到一定程度,样品开始溶解,生成可溶的降解产物。 3.2 影响聚乳酸降解的因素 聚乳酸所处环境对其降解有很大关系,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解,主要的因素有微生物、酶、聚合结构,此外如氧的存在与否、pH值、温度、湿度等也对其有影响。

医药用高分子材料——聚乳酸

医药用高分子材料——聚乳酸 聚乳酸(PAL)也称为聚丙交酯,属于聚酯家族。它是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸作为一种新型的高分子聚合材料有良好的生物相容性和生物降解性,是FDA认可的一类生物降解材料,最终降解产物是二氧化碳和水,对人体无毒、无刺激,因此聚乳酸及其共聚物已经成为生物医用材料中最受重视的材料之一。20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。直到20世纪60年代,科学工作者重新研究PAL对水敏感这一特征时,发现聚乳酸适合作为可降解手术缝合线材料。1966年,Kulkami等提出低分子量的PAL能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PAL在生物体内降解后不会对生物产生不良影响。随后报道了高分子量的PAL也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。 1 聚乳酸及其共聚物在缓释药物中的作用 缓释、控释制剂又称为缓释控释给药系统(sustained and controlled release drug delivery system),不需要频繁给药,能够在较长时间内维持体内有效的药物浓度,从而可以大大提高药效和降低毒副作用[4]。聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药的次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种:一是使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作用,让药物定量持续释放以保持血药相当平稳;另一种是作为-囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。 聚乳酸作为释放剂的优点:熔融温度低,且易溶于溶剂中;聚乳酸水解产物为乳酸,对人体无害;低聚乳酸容易制备。 2 聚乳酸在骨内固定及组织工程方面的应用 20世纪80年代美国科学家Langer与Vacanti提出了“组织工程”这一再生医学新概念,并于20世纪90年代初将其定义为研究开发具有修复、改善、代替人体组织或功能的生物装置的生命科学工程技术[12]。目前组织工程研究主要集中于以下几个方面:细胞外基质替代物的研究;种子细胞的立体培养;组织工程化组织对各种病损组织的替代研究。其中寻找一种理想的材料作为细胞外基质替代物是组织研究工程研究的一个重要课题。作为一种理想的材料,临床上应满足以下几点:组织相容性好、无排斥反应;生物可降解性、降解可调性及降解无毒性;易于塑形;适应种子细胞生长、繁殖需要的物理和化学条件;可灭菌并对其性能没有本质上的影响。 聚乳酸材料代替钢板、钢针,避免了金属固定物的几个缺点:弹性模量不匹配,产生应力遮挡。大量证据表明,坚硬接骨加压内固定时骨折发生愈合的同时,可诱发局部骨质疏松。由于固定骨板,皮质骨空隙过度增加,壁变薄,骨力学性能下降,因而在固定骨板取出之后,固定骨板有再骨折的可能。有些报道表明,再骨折发生率甚至高达20%;生物相容性差。金属钢板可破坏骨折愈合及再塑性,可降解材料可随时间的增加而逐渐失去强度,使正常的应力沿骨干传递;金属腐蚀的例子产生无菌性炎症反应。金属、合金等固定物腐蚀释放的金属离子与局部组织的炎症反应及疼痛密切相关。所以,骨修复材料选择组织相容性好且可免除手术摘除的可降解高分子材料是理想的选择。 3 聚乳酸作为外科手术缝合线的应用

聚乳酸项目申报材料

聚乳酸项目 申报材料 规划设计/投资分析/产业运营

聚乳酸项目申报材料 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 该聚乳酸项目计划总投资9496.50万元,其中:固定资产投资6449.34万元,占项目总投资的67.91%;流动资金3047.16万元,占项目总投资的32.09%。 达产年营业收入21523.00万元,总成本费用17199.17万元,税金及附加175.49万元,利润总额4323.83万元,利税总额5095.71万元,税后净利润3242.87万元,达产年纳税总额1852.84万元;达产年投资利润率45.53%,投资利税率53.66%,投资回报率34.15%,全部投资回收期4.43年,提供就业职位329个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

聚乳酸项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

相关文档