文档库 最新最全的文档下载
当前位置:文档库 › 聚乳酸

聚乳酸

聚乳酸
聚乳酸

聚乳酸

张刚

(生物医学工程2012051611)

摘要:本文介绍了聚乳酸的基本结构和性能、合成方法与改性以及其应用,发掘其优良性能,提出聚乳酸性能的局限性以及提取合成中亟需解决的问题,对其未来的发展作了展望。

关键词:聚乳酸;合成;性能;改性;应用;前景

1.聚乳酸的基本结构与性能

1.1基本结构

聚乳酸是一类性能十分优异脂肪族聚酯,其具有优良的生物相容性和生物降解性,而且可塑性强。制备聚乳酸的原料一一乳酸一般是由小麦,玉米,谷物秸秆等可再生资源发酵制得的[]1-2。乳酸是含有一个不对称碳原子的最简单的羧基酸,其具有2种旋光异构体,分别是D型和L型异构体,下图所示。

图1.1 L型乳酸和D型乳酸的化学结构

图1.2丙交酯的异构体示意图

由于乳酸存在2种异构体,故其二聚体丙交酯也有L, D,内消旋三种类型,结构如图1.2。进而合成的聚乳酸也分为聚L乳酸(PLLA),聚D乳酸(PDLA)和聚D,L乳酸(PDLLA)。其中,PLLA和PDLA具有结晶性,而PDLLA是非结晶性的[]3。

一般来说,PLA为浅黄色或者无色的略透明的物质,易溶于二氯甲烷、氯苯等,不溶于甲醇、乙醇、水等,易水解,并且不同构型的PLA物理性有所不同,基本性质如下:

表1

1.2聚乳酸的性能

1.2.1聚乳酸的优良性能

聚乳酸是一种可以被生物降解的聚酯材料。在自然界中,聚乳酸产品易被光,水,微生物等作用而降解掉,最终形成无污染的二氧化碳和水。聚乳酸的应用在有效利用可持续资源的同时,极大的缓解了日益加剧的环境问题。聚乳酸还具有很多独特的性能,比如良好的表观,较高的机械强度,低毒性,良好的阻隔性也使得它的应用范围更加广泛。其优良的物理性能和加工性能,使其能通过一般通用热塑性塑料的加工技术来加工成型,例如挤出,注塑,拉伸吹塑,热成型,熔融纺丝等。下表对比了典型的生物降解塑料与LDPE, PS和PET 的性能。

表2

1.2.2聚乳酸的性能的局限性

聚乳酸也有很多弱点,如其机械性能、热变形温度、气体穿透性、耐久性等,限制了它在纺纤、注塑、泡沫塑料、衬垫包装、以及高附加值应用领域的使用。

1.2.2. 1热变形温度

受光学纯度、分子质量、支链、添加剂和加工条的影响,聚乳酸产品可以是非结晶、部分结晶和全结晶状态,这些态会影响产品的热变形温度及强度。许多吸塑或者注塑产品都是使用普通的非结晶型聚乳酸(-PLA

),其热变形温度在55℃左右,这就意味着一般非结晶型

聚乳酸产品在55℃的时候就开始变形,因此其产品只适合在中温使用,不能在电子器件、咖啡杯或者热餐容器等高温应用。这较低的热变形温度也使未经耐热改性处理的聚乳酸产品可能在夏季会造成运输问题,因为在夏天卡车内的温度可以高达60-70°C。必须以改性处理来提高聚乳酸产品的耐热性。

1.2.2.2机械强度、脆性和弹性

聚乳酸的机械性能,如脆性和抗撕裂性能远远低于其他的塑料,这些缺点在非结晶聚乳酸吸塑产品上表现得尤为突出,这也限制了它在高附加值注塑加工领域的使用(如电子器件外壳)。聚乳酸很脆,容易在外力冲击下损坏,较差的弹性使之不能与PE和PP生产的购物袋、垃圾袋、农膜相抗衡。共混改性工艺在扩大聚乳酸的应用到高附加值的产品和弹性膜类产品上极为重要。

1.2.2. 3气体穿透性(或阻隔性)

聚乳酸的气体穿透性比PE和PP高许多,因此,聚乳酸虽可用于鲜奶及矿泉水瓶,但是不能用于需要长期储存的物质或碳酸类饮料如汽水、可口可乐、啤酒和酒精等,因为水气会通过聚乳酸瓶泄漏出去。

1.2.2. 4其他(耐久性、防火性能等)

在一些高附加值应用领域诸如电脑、电子电器及汽车行业,其他

的一些特性如防火性能、耐久能力等特性是必须的。作为生物降解塑料,聚乳酸可以在工业级堆肥条件(温度在58°C左右,湿度在80%-90 %)下快速地降解,但是在没有经过共混改性之前,它不能满足许多高附加值应用领域的耐久要求。

上述所列聚乳酸的缺点,使得目前通过对聚乳酸进行增塑、共聚、共混等改性方法来改进聚乳酸的力学性能,改善其亲水性,并使其降解性能不受影响,从而能更好地满足生物医用以及环保的应用,才能使这种材料应用到更广的市场范围内。

2.聚乳酸的主要合成途径

2.1聚乳酸的化学合成途径(Chemical synthesis of poly(lactic acid) (PLA))

聚乳酸的化学合成途径主要有三种途径:第一种途径是丙交酯开环聚合法,第二种途径是直接缩聚法,第三种途径是固相缩聚法。

2.1.1丙交酯开环聚合法

丙交酯开环聚合法也成为二步合成法,第一步是丙交酯的制备与分离纯化,先由乳酸单体在引发剂条件下脱水,两分子间酯化形成具有稳定的六元环结构的二聚体丙交酯,经过分离提纯后备用;第二步将纯净的丙交酯在催化剂和一定温度下进行开环聚合制备聚乳酸。其反应原理如下:

图3丙交酯开环聚合法制备聚乳酸

丙交酯开环聚合法工艺复杂、聚合反应条件苛刻、所得聚乳酸的产率偏低且成本较高,这是聚乳酸类生物降解塑料没有被大量普及应用的主要问题。根据反应中不同的引发剂,可以将开环聚合分为三类:阳离子聚合、阴离子聚合以及配位聚合。

2.1.2乳酸直接缩聚法

所谓直接缩聚法是指在脱水剂的存在下,乳酸分子之间的羟基和羧基发生直接缩合脱水反应生成聚乳酸的一种合成工艺,如下图所示。与丙交酯开环聚合法相比,直接缩聚原料乳酸来源充足,价格便宜,单体转化率较高,工艺简单,不需要经过中间体的纯化,因而成本较低。直接缩聚法的主要问题是游离乳酸、水、低聚物和丙交酯之间存

在平衡,反应生成的水等副产物在载性熔融物中较难除去,从而使反应不易向正方向进行,较难得到高分子量的聚合物。聚合温度很高时通常导致产物带色。因此,如何提高聚合产物的相对分子质量是直接缩聚法的关键。

图4直接缩聚法制备聚乳酸

2.1.3固相聚合法

固相聚合法也是一种合成各种聚合物材料的重要方法,其原理是将乳酸单体通过直接缩聚的方法预先对乳酸进行聚合得到聚乳酸预聚物,然后将聚乳酸预聚物在低于其熔点(

T)并高于玻璃化转变温度

m

(

T)合成聚乳酸的一种新方法。固相聚合法合成聚乳酸的反应原理如g

下图所示。

固相聚合法能够显著提高聚乳酸的相对分子质量,热稳定性,使聚乳酸的力学性质得以显著的优化,更加便于聚乳酸的成型加工和应用,同时此方法还具有不使用有机溶剂,无毒环保,产物纯净,原料

利用率高等优点,因此固相聚合法也是一种合成聚乳酸很有发展潜力的方法。但是,目前国内外对于固相聚合法还处于摸索阶段,对于其聚合反应的机理的研究成果还不太成熟;而且固相聚合法对于乳酸单体和聚乳酸预聚物的纯度要求很高,微量的杂质即可严重影响聚合产物的各种性能,故一定程度上限制了其应用范围。所以,目前固相聚合法还处于研究阶段,真正实现工业化还需要有较大的突破性进展。

2.2聚乳酸的非化学合成途径(Non-chemical methods for production of PLA)

2.2.1重组大肠杆菌(Recombinant E. coli for PLA homopolymer)如今,通过使用大肠杆菌的一种可代谢的工程品种,使用单一步骤的生产工序,可通过直接发酵制成聚乳酸及其共聚物。该方法使聚乳酸及含有乳酸的共聚物的可再生生产更省钱,更具商业价值。这种将系统级代谢工程与酶素工程相结合的方法,如今可通过可再生资源的直接微生物发酵而直接生产聚合物产品和聚合脂产品。

3.聚乳酸的改性

聚乳酸在应用的过程中也存在很多缺陷如吸水性性比较差、细胞相容不好、以及降解周期比较长等等。所以,人们不断加大对聚乳酸的研究,以求聚乳酸能更好的迎合人们的需要,特别是近几年来各种不同的新的改性技术的不断涌现,伴随着对聚乳酸研究的不断深入也在某种程度上对促进了对聚乳酸研究有了进一步的加深。到目前为止聚乳酸改性研究的主要涉及如下三个层次:

3.1化学改性

3.1.1共聚改性

聚乳酸化学改性的方法的主要原理是通过原料乳酸与不同量的共聚物发生反应以此来达到调节聚乳酸的亲疏水性以及达到由丙交

酯制备聚乳酸等。目前主要的改性原料使用较多的是胺类、醇类等等。

3.1.2交联改性

所谓交联改性即生物活性分子与聚合物在交联剂的催化下或者辐射下,通过生成网状聚合物来生成化学反应的,形成化学键来改变其性能的一种方法。常用的交联剂主要包括酸醛类、多异氰酸酯等,在不同的反应条件下,其交联的方式合成都会有些许不同。

3.1.3表面改性

所谓表面改性,即运用反应溶液进行处理、投入反应离子以及采用在聚合物的表面进行修饰等方式对聚乳酸的表层进行活化处理,促使聚合物拥有更加适合微生物生活的环境,以此来增进和其他聚合物反应接触的机会。它主要包括在表面接枝改性与再低温下进行离子体改性两种。

3.2物理改性

3.2.1共混改性

所谓共混改性即将聚乳酸与聚酞胺酯等高聚物按照一定比例进行混合,由于不同的化合物材料组成结构性能的不同导致相互之间进行复合以此来达到改性聚乳酸的目的。这种改性方法的主要优势在于在保留原聚乳酸优点的同时,通过与其他的共混聚合物发生共混反应以此来改变其聚集结构,从而富于了聚乳酸新的性能,此法不仅工艺

简单而且节约成本。

3.2.2增塑改性

所谓增塑改性就是在聚乳酸或其聚合物中加入低聚物聚乙二醇,丙三醇等其他具有沸点相对比较高、挥发性相对比较低的物质,从而达到改变聚乳酸性能,以求更好的符合人们需求的一种改性方法。常用的增塑试剂主要包括甘油三乙酸酯、柠檬酸类(三丁酯、三正丁酯等)等,选择合适的增塑剂是有效改善聚乳酸的方法之一,随着对聚乳酸及其衍生物的研究发现研究其热力学性能、力学性能对今后加大对改性聚乳酸在人们生活领域的应用将是十分热门的话题。

3.2.3表面吸附改性

所谓聚乳酸的表面吸附改性即利用聚乳酸结构与其他聚合物结构的不同且可以相互作用的特点,在聚乳酸原料的表面涂饰上一层含有N一等元素的物质吸附于聚乳酸原料的表层,以求达到提高聚乳酸原材料与细胞的相互粘合力与亲附性的大小,是一种改性新型改性方法。

3.3复合改性

复合改性即基于聚乳酸材料本身的一些弱性与其他材料的一些优势进行复合,这样不仅克服了聚乳酸材料本身的缺陷而且在一定程度上扩大了材料的使用范围,经过复合改性后的材料主要优势是复合后的聚乳酸及其衍生物在生物相容性方面、亲疏水性方面以及拉伸性

能方面都有了很大方面的改善。到目前为止对聚乳酸的复合材料研究较多的主要分为玻璃类得纤维状光纤、有机物质以及无机类纳米材料等几大类。

4.聚乳酸的应用

4.1在生物医学上的应用

目前可用的医用高分子材料有聚四氟乙烯、硅油、硅橡胶等数十种,但是从生物医学的角度上来看,这些材料还不算理想,在使用过程中多少有些副作用,而聚乳酸是应运而生的一种新型医用高分子材料。PLA降解之后,产生

CO和2H O,无毒、无害,对人体有高度的

2

安全性,降解产物可被人体吸收,这些优良的特性,使聚乳酸广泛应用于药物缓释剂、人体骨固定材料、手术缝合线、一次性输液工具等。

4.1.1外科手术缝合

聚乳酸作为手术缝合线主要优势是当破伤的组织细胞随着时间的慢慢的愈合时,其制成的缝合线会自动分解成其他对身体没有伤害的物质,在这种情况下无需二次手术,这无疑很大的减轻了患者在手术过程中的痛苦。基于聚乳酸作为手术缝合线在人体无需二次手术的情况下,在人体内自动消失的优势促使其越来收到医生的青睐,在应用过程中,要求聚合物具有较强的初始抗张力强度且能维持一段时间。目前研究主要集中在以下几个方而:①合成高分子质量的聚乳酸。良好的机械强度依赖于高的分子质量,如何改进生产工艺提高分子质量成

为亟需解决的问题;②合成具有光学活性的PLA。PLA可分为PDLA(右旋聚乳酸)、PLLA(左旋聚乳酸)和PDLLA(混旋聚乳酸),而PDLA, PLLA比PDLLA具有较高的机械强度、较大的拉伸比和较低的收缩率;③合成具有抗炎功能的聚乳酸。在手术缝合线中加入抗炎药物来抑制局部炎症反应及排斥反应。

4.1.2药物控制释放体系

可生物降解聚合物微球是继脂质体、乳剂、天然高分子微囊后的另一种新型药物载体。通过调节乳酸和其它单体的共聚,形成性能不同的PLA类共聚物如乳酸一轻基乙酸共聚物CPLC3A)、乳酸一乙二醇共聚物((PELA)等。聚乳酸(PLA)及其共聚物作为生物可降解高分子材料由于其优良的生物可降解性、生物相容性被用作一些体内稳定性差、易变性、易被消化酶降解、不易吸收以及毒副作用大的药物控释制剂的可溶蚀材料,有效地拓宽了给药途径,减少给药次数和给药量,提高药物的生物利用度,最大程度地减少药物对全身特别肝、肾的毒副作用,因此被广泛应用于药物缓释技术。用聚乳酸及其共聚物制得的载药微球,在药物的缓释、靶向释放及增长药效等方面,都有很好的效果。

4.1.3骨折固定材料

常用的金属内固定材料和不可吸收聚合物基复合材料作为骨骼固定件,在骨骼愈合后需要进行二次手术才能取出,会给病人造成极

大痛苦。聚乳酸具有较大的初始强度和承载能力,作为骨折后骨骼的固定材料,在一定时间内能保持其强度,然后逐渐降解,变成组织相容的物质而被活性组织吸收并被愈合的组织所取代,表现出良好的生物相容性和可降解性。

4.1.4眼科植入材料

视网膜脱离是严重致盲性的眼病,通常是通过手术,在眼巩膜表面植入填充物,并结合激光、冷冻等医学手段使裂孔愈合。目前,这种填充物通常采用硅橡胶或硅胶海绵制成,由于这两种物质是生物不可降解材料,常引起不同程度的异物反应,而聚乳酸即可解决这个问题。

4.2一次性用品领域

PLA作为环保型材料将逐步取代现用的一次餐具、食品包装材料等一次性用品。它可用来制作快餐盒、包装袋、购物袋、一次性茶杯、航空用品等。由于当前PLA价格昂贵,其应用受到了限制,但开发出价廉且完全生物降解的环保型材料——聚乳酸将是未来发展的必然趋势。

4.3纺织领域的应用

PLA在纺织领域的研究应用开发是最近10年左右开始的。聚乳酸可用纺粘法或熔喷法直接制成非织造布,也可先纺制成短纤维,再经干法或湿法成网制得非织造布。聚乳酸非织造布用于农业、园艺方面,可用作种子培植、育秧、防霜及除草用布等;在医疗卫生方面,

可用作手术衣、手术覆盖布、口罩等,也可用作尿布、妇女卫生巾的面料及其他生理卫生用品;在生活用品方面,可用作衣料、擦揩布、厨房用滤水、滤渣袋或其他包装材料。

5.总结

综上所述可以预见,聚乳酸及其共聚物由于其生物相容性、生物可降解性等优良性能,近年来新的用途不断被开发出来,聚乳酸已经成为目前医药领域中应用最广泛和最有前景的高分子材料。但它的缺点大大地阻碍了它的实际应用。今后的研究工作可以从以下几方面展开:①根据组织工程支架材料的要求,进行仿生设计,制备具有模仿细胞微环境的聚乳酸生物活性材料或是制备具有特异性生物功能的聚乳酸生物活性医用材料。②根据药物缓释材料的要求,改善聚乳酸的降解可控性。③改进聚乳酸的合成工艺条件,降低成本。④用新材料对聚乳酸进行改性,接枝生物活性因子,减少植入材料的术后并发症,减少排异现象。⑤利用分子设计合成具有细胞识别功能的聚乳酸改性材料,更有效地提高聚乳酸的细胞亲和性。

引用文献

[1]Bonila J, Fortunati E, Vargas M, et al. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films[J].Journal of Food Engineering, 2013, 119(2): 236-243.

[2]Karamanlioglu M, Robson G D. The influence of biotic and abiotic factors on the rate degradation of poly(lactic) acid (PLA) coupons buried in compost and soil[J]. Polymer Degradation and Stability, 2013, 98(10): 2063-2071.

[3]贾玉亮. 聚乳酸及聚乳酸合金的合成、结构与性能[D]. 青岛:青岛科技大学, 2013. 1-4

[4]胡孟秋. PLA的扩链合成及其降解性能研究[D]. 陕西:陕西科技大学, 2014. 11-14

[5]Jung Eun Yang, So Young Choi.Microbial production of lactate-containing polyesters[J].Microbial Biotechnology,2013,6(6):621-636.

[6]Yu Kyung Jung, Sang Yup Lee.Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli[J].Journal of Biotechnology,2011,151(1):94-101.

[7]马喜峰. 聚乳酸的合成和应用[J]. 精细与专用化学品, 2014, 22(2): 13-15

[8]江佳晶. 聚乳酸的合成研究[D]. 江苏:江苏科技大学, 2012. 1-9

[9]胡建军. 聚乳酸合成技术研究进展[J]. 化工进展, 2012, 31(12): 2725-2727

[10]马佳. 聚乳酸合成和改性[J]. 聚酯工业, 2014, 27(3): 6-8

[11]张海龙.聚乳酸在生物医药领域的改性研究进展[J].高分子通报,2012,12(12):70-74.

[12]苏瑞霞. 聚乳酸的改性及应用性能研究[D].山东:齐鲁工业大学,2014.2-5.

[13]Fan Guo-dong, Zhang Chun-mei. Modification and application of medical poly(lactic acid) materials[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2010,14(42):7891-7893

[14]曹燕琳,尹静波,颜世峰.生物可降解聚乳酸的改性及其应用研究进展[J].高分子通报,2006,108(10):90-96.

[15]李玉洁,姚军燕,陈明河,苗旺.聚乳酸静电纺丝纳米纤维及其药物缓释体系[J].高分子材料科学与工程,2014,30(6):147-150.

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

聚乳酸项目建议书

聚乳酸项目 建议书 规划设计/投资分析/产业运营

摘要 聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 该聚乳酸项目计划总投资3273.76万元,其中:固定资产投资2547.14万元,占项目总投资的77.80%;流动资金726.62万元,占项目总投资的22.20%。 达产年营业收入7235.00万元,总成本费用5573.14万元,税金及附 加62.06万元,利润总额1661.86万元,利税总额1953.14万元,税后净 利润1246.39万元,达产年纳税总额706.74万元;达产年投资利润率 50.76%,投资利税率59.66%,投资回报率38.07%,全部投资回收期4.13年,提供就业职位132个。 报告根据项目产品市场分析并结合项目承办单位资金、技术和经济实 力确定项目的生产纲领和建设规模;分析选择项目的技术工艺并配置生产 设备,同时,分析原辅材料消耗及供应情况是否合理。 由于聚乳酸作为生物新材料应用前景的日益看好,近年国内一些玉米 深加工企业和生物化工企业开始投资进入聚乳酸行业,2018年末,浙江海正生物材料股份有限公司及中粮生化能源(榆树)有限公司等PLA生产线的 建设,2018年国内PLA年设计生产能力近13万吨。2019年产能大约在

14.9万吨左右,产量在13.9万吨左右,但受制于技术因素,目前国内企业用于生产聚乳酸的原材料——丙交酯仍主要从国外进口,生产成本较高,已成为制约国内聚乳酸产业发展的瓶颈。 报告主要内容:项目概论、背景和必要性研究、市场调研预测、产品及建设方案、项目选址分析、项目工程设计研究、工艺技术说明、环境影响说明、安全经营规范、项目风险性分析、节能评价、项目实施方案、项目投资情况、项目经营效益、项目评价结论等。

聚乳酸

聚乳酸 单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 一、聚乳酸的优点 聚乳酸的优点主要有以下几方面: (1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。 (2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 (3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。 (4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。 (5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。 (6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,

聚乳酸生产制造项目投资分析报告

聚乳酸生产制造项目投资分析报告 规划设计/投资分析/实施方案

聚乳酸生产制造项目投资分析报告 由于聚乳酸作为生物新材料应用前景的日益看好,近年国内一些玉米深加工企业和生物化工企业开始投资进入聚乳酸行业,2018年末,浙江海正生物材料股份有限公司及中粮生化能源(榆树)有限公司等PLA生产线的建设,2018年国内PLA年设计生产能力近13万吨。2019年产能大约在14.9万吨左右,产量在13.9万吨左右,但受制于技术因素,目前国内企业用于生产聚乳酸的原材料——丙交酯仍主要从国外进口,生产成本较高,已成为制约国内聚乳酸产业发展的瓶颈。 该聚乳酸项目计划总投资21036.78万元,其中:固定资产投资16916.78万元,占项目总投资的80.42%;流动资金4120.00万元,占项目总投资的19.58%。 达产年营业收入31259.00万元,总成本费用24479.90万元,税金及附加348.32万元,利润总额6779.10万元,利税总额8062.47万元,税后净利润5084.33万元,达产年纳税总额2978.15万元;达产年投资利润率32.22%,投资利税率38.33%,投资回报率24.17%,全部投资回收期5.64年,提供就业职位669个。

报告根据项目建设进度及项目承办单位能够提供的资本金等情况,提出建设项目资金筹措方案,编制建设投资估算筹措表和分年度资金使用计划表。 ...... 聚乳酸系乳酸单体经脱水缩聚所形成的高分子聚合物,是一种典型的合成类可完全生物降解材料,由于其具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,在生物医用高分子、纺织行业、农用地膜和包装等行业具有广阔的应用前景。

新型可降解材料聚乳酸及如何延长其使用寿命

本科毕业论文(设计) 题目:新型可降解材料聚乳酸及如何延长其使用寿命 系院: 学生姓名: 学号: 专业: 年级: 完成日期: 指导教师:

摘要: 本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命

Abstract : This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook. Key words : of polylactic acid;synthesis;degradation;life

目录 引言 (5) 1 聚乳酸的生产方法 (6) 1.1 直接缩聚法 (6) 1.2 间接聚合法 (6) 2 聚乳酸的基本性能 (6) 3 聚乳酸的降解 (6) 3.1 聚乳酸的降解机理 (6) 3.2 影响聚乳酸降解的因素 (7) 4 提高其使用寿命的主要方法 (7) 4.1 加入抗氧化剂 ..................................... .. (7) 4.2 硝酸表面处理 (8) 4.3 酸性和干燥的环境 (8) 4.4 改变 PLA 的分子结构 (8) 5.结语 (9) 参考文献: (9)

引言 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

聚乳酸生产加工项目策划方案

聚乳酸生产加工项目 策划方案 投资分析/实施方案

承诺书 申请人郑重承诺如下: “聚乳酸生产加工项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx科技公司(盖章) xxx年xx月xx日

项目概要 20世纪80年代,我国约有50多家小型乳酸厂,数年来,随着市场竞 争逐渐淘汰至10家左右,年产能合计约20万吨。根据市场调研机构IHSMarkit的统计,2018年我国国内乳酸市场保持持续增长,乳酸产量为12.1万吨,进口量0.80万吨,出口量4.52万吨,表观消费量为8.38万吨。 由于聚乳酸作为生物新材料应用前景的日益看好,近年国内一些玉米 深加工企业和生物化工企业开始投资进入聚乳酸行业,2018年末,浙江海 正生物材料股份有限公司及中粮生化能源(榆树)有限公司等PLA生产线的 建设,2018年国内PLA年设计生产能力近13万吨。2019年产能大约在 14.9万吨左右,产量在13.9万吨左右,但受制于技术因素,目前国内企业用于生产聚乳酸的原材料——丙交酯仍主要从国外进口,生产成本较高, 已成为制约国内聚乳酸产业发展的瓶颈。 该聚乳酸项目计划总投资19868.07万元,其中:固定资产投资16372.28万元,占项目总投资的82.40%;流动资金3495.79万元,占 项目总投资的17.60%。 达产年营业收入28753.00万元,总成本费用22991.60万元,税 金及附加334.89万元,利润总额5761.40万元,利税总额6890.97万元,税后净利润4321.05万元,达产年纳税总额2569.92万元;达产

石墨烯_聚乳酸复合材料的制备与性能研究_谢元仲

石墨烯/聚乳酸复合材料的制备与性能研究 谢元仲,徐淑艳,张维丽,孟令馨 (东北林业大学,哈尔滨150040) 摘要:目的制备具有优异阻隔性能及热稳定性的聚乳酸薄膜材料。方法方法在聚乳酸中添加石墨烯对其进行改性。首先采用改进的Hummers 法将鳞片状石墨制备成氧化石墨烯,继而采用热剥离法将氧化石墨烯还原剥离为石墨烯,然后以聚乳酸为基材,还原后的石墨烯为增强相,采用流延法制备石墨烯/聚乳酸复合薄膜,并测试了其结构、热稳定性以及阻隔性能。结果结果红外分析表明,石墨被强氧化剂氧化后形成了以C —OH ,—COOH ,C —O —C 和C =O 等官能团形式存在的石墨层间化合物,还原后获得的石墨烯剥离充分;石墨烯/聚乳酸复合薄膜的热稳定性能和阻隔性能随石墨烯含量的增加而逐渐增强。结论结论在试验参数范围内,石墨烯/聚乳酸复合薄膜的热稳定性和阻隔性能优于聚乳酸薄膜。关键词:石墨烯;聚乳酸;阻隔性能;热稳定性中图分类号:TB484.9 文献标识码:A 文章编号:1001-3563(2016)09-0007-05 Preparation and Properties of Graphene and Polylactic Acid Composites XIE Yuan-zhong ,XU Shu-yan ,ZHANG Wei-li ,MENG Ling-xin (Northeast Forestry University ,Harbin 150040,China ) ABSTRACT :This work was aimed to obtain polylactic acid films with good barrier properties and thermal stability.Graphene was added into polylactic acid to modify it.Graphene oxide was prepared using the flaky graphite by the improved Hummers method.Graphene oxide was reduced to graphene by thermal stripping method.Grapheme/polylactic acid films were prepared with tape casting method,using polylactic acid as the substrate and graphene as the reinforcement.The structure,thermal stability and barrier properties of films were tested.Infra-red spectrogram showed that graphite intercalation compound with COOH,C =O,C —O —C and C —OH functional groups was formed when graphite was oxidized by the strong oxidizer,and graphene stripped sufficiently by reduction.The thermal stability performance and barrier properties of graphene and lactic acid composite films increased with the increasing graphene content.Within the scope of the test parameters,the thermal stability and barrier performance of the graphene/PLA composite films were better than those of polylactic acid film. KEY WORDS :graphene ;polylactic acid ;barrier properties ;thermal stability 收稿日期:2015-11-13 基金项目:中央高校基本科研业务费专项资金(2572015DY06) 作者简介:谢元仲(1989—),男,山东济宁人,东北林业大学硕士生,主攻包装材料阻隔性能。通讯作者:徐淑艳(1976—),女,辽宁朝阳人,博士,东北林业大学副教授,主要研究方向为包装材料。 包装的主要目的是保护内容物免受外界环境(如氧气、水蒸气、油脂等)的侵害,延长物品保质期,这就要求包装材料具有一定阻隔性能,尤其对氧气和水蒸气的阻隔性[1]。另外,高阻隔包装膜还应具有良好的透光性,内容物可见,能很好地展示商品。聚乳酸是 一种可完全生物降解的绿色包装材料,具有良好的力学性能、生物相容性、透光性,广泛应用于各种包装领域[2—5],但是,纯的聚乳酸膜阻隔性能较差,水蒸气和氧气很容易透过薄膜,且热稳定性差,易分解[6—8]。这些缺点使得聚乳酸无法满足作为高阻隔性包装材料的 包装工程 PACKAGING ENGINEERING 第37卷第9期2016年5月 7

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸项目投资计划书

聚乳酸项目 投资计划书 规划设计/投资分析/产业运营

聚乳酸项目投资计划书说明 20世纪80年代,我国约有50多家小型乳酸厂,数年来,随着市场竞 争逐渐淘汰至10家左右,年产能合计约20万吨。根据市场调研机构IHSMarkit的统计,2018年我国国内乳酸市场保持持续增长,乳酸产量为12.1万吨,进口量0.80万吨,出口量4.52万吨,表观消费量为8.38万吨。 该聚乳酸项目计划总投资14279.34万元,其中:固定资产投资 12145.27万元,占项目总投资的85.05%;流动资金2134.07万元,占项目 总投资的14.95%。 达产年营业收入16878.00万元,总成本费用12710.38万元,税金及 附加271.40万元,利润总额4167.62万元,利税总额5013.86万元,税后 净利润3125.72万元,达产年纳税总额1888.14万元;达产年投资利润率29.19%,投资利税率35.11%,投资回报率21.89%,全部投资回收期6.07年,提供就业职位275个。 报告目的是对项目进行技术可靠性、经济合理性及实施可能性的方案 分析和论证,在此基础上选用科学合理、技术先进、投资费用省、运行成 本低的建设方案,最终使得项目承办单位建设项目所产生的经济效益和社 会效益达到协调、和谐统一。 ......

报告主要内容:项目概述、背景及必要性研究分析、市场研究分析、产品规划方案、选址可行性分析、项目建设设计方案、项目工艺技术、项目环境保护分析、项目安全规范管理、投资风险分析、项目节能说明、进度方案、投资情况说明、项目经营效益分析、综合评价说明等。 由于聚乳酸作为生物新材料应用前景的日益看好,近年国内一些玉米深加工企业和生物化工企业开始投资进入聚乳酸行业,2018年末,浙江海正生物材料股份有限公司及中粮生化能源(榆树)有限公司等PLA生产线的建设,2018年国内PLA年设计生产能力近13万吨。2019年产能大约在14.9万吨左右,产量在13.9万吨左右,但受制于技术因素,目前国内企业用于生产聚乳酸的原材料——丙交酯仍主要从国外进口,生产成本较高,已成为制约国内聚乳酸产业发展的瓶颈。

聚乳酸介绍

聚乳酸介绍 PLA聚乳酸历史 聚乳酸PLA (Poly lactic acid)一种新的生物塑料材料,早在1932年Dupont的科学家Wallace Carothers在真空中将乳酸进行聚合,产生低分子量的聚合物,但是由于生产成本过高,直到1987年食品公司Cargill开始投资研发新的聚乳酸制造过程,Cargill随后于2001年与Dow合资进行商业化产量名为:Nature-Works的聚乳酸商品。由于聚乳酸材料同时有生体相容性与生物可分解性,因此在所有的可分解性塑料中占有42%的市场。由专利分析来看聚乳酸的用途,2005年DERWENT专利資料库中共有聚乳酸专利1740篇,其中医用专利542篇,设备方面专利517篇,包装方面专利293篇,纤维方面专利419篇。除生物可分解的特性外,聚乳酸的主要优势包括有良好的机械特性与其材料来源,聚乳酸的材料来源为淀粉,在今日原油价格上涨,石油储存量下降的环境之下,除具有环境保护的优势,也同时有能源经济的效益。比较聚乳酸与其他常规塑料的物性发現,聚乳酸的机械性质相當强韧,与聚苯乙烯、聚氯乙烯接近,韧度超过聚丙烯,用于包裝材料、医疗与纤维的潛力相當好,唯一影响其近一步取代塑料包裝材料的障碍是其生产成本,依照制造过程与規模不同,聚乳酸的生產成本目前为 20-28元/公斤,高于目前常规塑料的价格。已商业化生产的生物可分解塑料,可以看出聚乳酸在整個生物可分解塑料占有举足轻重的地位,而Cargill Dow LLC每年14万吨的聚乳酸产量則为世界最高。日本方面三井化學也開始规模化生产,预计该公司2008年聚乳酸的销售量可以超过30000吨。依照Frost Sullivan推测,全世界的生物可分解性塑料在2002年時的市场为12万公吨,到2010年可望成达到每年50.5~70万公吨,而如果按照以上各主要公司所公布的产能扩建预计更是大幅超过此数字,如德国的Inventa Fisher计划将其设备放大至每年80000吨,而Cargill Dow LLC更预计在2009年可以将其聚乳酸产能提升至每年45万公吨,可以看出其強大的商机与市场成长潛力。 什么是生物可分解材料 生物可分解材料(Biodegradable Materials),主要以天然高分子或聚酯种类为基质,一般以可不短重复取得的天然資源,如:微生物、植物、动物,所製成的一种聚合物。传統的塑胶材料不能被微生物分解成H2O和CO2,如:PE、PVC、PS、PP…等。生物可分解材料PLA的制品暴露在空气中时,並不会进行分解。但在有足够的湿度、氧气与适当的微生物条件下.存在的自然掩埋或堆肥环境中经过短短的20~45天,即可被微生物所分解成H2O和CO2,再次回归于自然环境中滋养植物成長。 PLA聚乳酸材料优点 ** 材料天然、无毒,透气性高, PLA制品经由美国FDA认可,可直接与食物接触。 (就算盛裝含有酸性,酒精成份之食材,也不会釋放任何危害人体之物質) ** 使用任何废弃物处理方式(如焚化、掩埋、回收、堆肥)皆不致对环境造成任何影响。 ** 可取代以石油为基質的传统塑胶材料,且有同类传统塑胶制品之物性,使用方法相同。 ** 丢弃后,经堆肥环境及掩埋处理可经由微生物完全分解 100%。

聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

材料化学结课论文汇总

新型可降解材料聚乳酸 摘要:随着时代的进步,科技的发展,我国在各方面都进入了高科技和新型功能材料的领域。比如说在功能材料应用这方面,我国已经引进并且也自己研发了许多新型功能材料,使我们的工业生产和日常生活都得到了实惠,也为我们提供了诸多方便。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。 1 聚乳酸的生产方法 聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。 1.1直接缩聚法 直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。 1.2间接聚合法 间接聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚,没有小分子水生成,所以不需要进行抽真空排除小分子,聚合设备简单,此法所得聚乳酸分

子量高达数万乃至数百万,机械强度高。近年来,为便于工业化生产,主要集中在开环聚合的高效催化体系,新型结构和组成的共聚物的合成等方面的研究,以制备更高分子量的聚乳酸。 2 聚乳酸的基本性能 聚乳酸是其中一种研究较多和性能较好的可生物降解的高分子材料。乳酸有非常好的透明性,可在牛物体内分解、吸收,同时其力学性能可和通用塑料媲美。聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,对人体无害,具有良好的生物相容性。聚乳酸现已成为生物降解医用材料领域中最受重视的材料之一。目前,聚乳酸已被广泛应用于药物控制释放材料、免拆手术缝合线和注射用微胶囊、埋植剂、骨材料、眼科材料等。此外,聚乳酸还可用于农业、包装材料、日用杂品等领域。 3 聚乳酸的降解 乳酸是一种性能优异的生物降解材料,能被酸、碱、生物酶等降解,降解的最终产物是CO2和H2O,对环境无污染。早已公认为是最有前途的医用可降解高分子材料。 3.1聚乳酸的降解机理 PLA作为聚酯类材料,其降解分为简单水解降解和酶催化降解。简单水解降解是酯化反应的逆反应,起始于水的吸收,小分子的水移至样品的表面,扩散进入酯键或亲水基团的周围。在介质中酸、碱的作用下,酯键发生自由水解断裂,样品的数均分子量缓慢降低,当分子量降低到一定程度,样品开始溶解,生成可溶的降解产物。 3.2 影响聚乳酸降解的因素 聚乳酸所处环境对其降解有很大关系,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解,主要的因素有微生物、酶、聚合结构,此外如氧的存在与否、pH值、温度、湿度等也对其有影响。

聚乳酸项目可行性报告

聚乳酸项目可行性报告 xxx有限责任公司

摘要 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为 全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求 和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 认真贯彻执行“三高、三少”的原则。“三高”即:高起点、高水平、高投资回报率;“三少”即:少占地、少能耗、少排放。 该聚乳酸项目计划总投资14205.07万元,其中:固定资产投资 11623.08万元,占项目总投资的81.82%;流动资金2581.99万元,占项目 总投资的18.18%。 达产年营业收入17598.00万元,总成本费用13920.44万元,税金及 附加231.09万元,利润总额3677.56万元,利税总额4415.90万元,税后 净利润2758.17万元,达产年纳税总额1657.73万元;达产年投资利润率25.89%,投资利税率31.09%,投资回报率19.42%,全部投资回收期6.65年,提供就业职位353个。 项目概述、建设背景、产业研究分析、投资建设方案、项目建设地分析、项目工程设计研究、工艺说明、环境影响说明、安全卫生、项目风险

评价分析、项目节能方案分析、进度计划、投资计划方案、经济收益分析、项目结论等。

聚乳酸项目可行性报告目录 第一章项目概述 第二章项目承办单位基本情况第三章建设背景 第四章项目建设地分析 第五章项目工程设计研究 第六章工艺说明 第七章环境影响说明 第八章项目风险评价分析 第九章项目节能方案分析 第十章实施进度及招标方案第十一章人力资源 第十二章投资计划方案 第十三章经济收益分析 第十四章项目结论

聚乳酸项目申报材料

聚乳酸项目 申报材料 规划设计/投资分析/产业运营

聚乳酸项目申报材料 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 该聚乳酸项目计划总投资9496.50万元,其中:固定资产投资6449.34万元,占项目总投资的67.91%;流动资金3047.16万元,占项目总投资的32.09%。 达产年营业收入21523.00万元,总成本费用17199.17万元,税金及附加175.49万元,利润总额4323.83万元,利税总额5095.71万元,税后净利润3242.87万元,达产年纳税总额1852.84万元;达产年投资利润率45.53%,投资利税率53.66%,投资回报率34.15%,全部投资回收期4.43年,提供就业职位329个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

聚乳酸项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

聚乳酸综述

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言 聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。 1、聚乳酸的研究背景 在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用。因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面 润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究; 80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法【2】。2、PLA 市场应用概况

相关文档