文档库 最新最全的文档下载
当前位置:文档库 › 聚乳酸综述

聚乳酸综述

聚乳酸综述
聚乳酸综述

聚乳酸(PLA)的合成及改性研究

摘要

介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。

关键词:聚乳酸合成改性

前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。

此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景

在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用。因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面

润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;

80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。

作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法【2】。2、PLA 市场应用概况

由于PLA 是一种可降解的、无污染的新型高分子材料,因此应用前景非常广阔。大部分塑料制品都可用PLA 代替应用,但受到PLA 产品价格因素以及生产技术影响,还不能完全推广。因此目前PLA产品都应用在高端应用领域,如生物医学领域等,PLA 可应用在以下一些领域。

(1)生物医学领域,目前的医用高分子材料使用过程中多少有些副作用,而PLA 基于其优越的生物相容性及其良好的物理性能,降解后生成二氧化碳和水,对人体无任何危害,并且因自然降解患者不用进行二次手术。因此PLA 可用于组织固定( 如骨螺丝钉,固定板和栓) 、药物传送( 如扩散控制) 、伤口包扎( 如人造皮肤) 以及伤口闭合( 如应用缝合线、外科用品) 等众多用途。

(2)包装领域,PLA 的无害特性使它能在包装领域具有广泛的应用前景,主要可用作包装带、包装用膜、农用薄膜、餐具、食品包装等。PLA 材料具有光洁的表面和高透明度以及良好的阻隔性能,在某些应用领域完全可以替代聚苯乙烯和PET,从而大大降低白色污染。

(3)纺织领域,PLA 可用纺黏法或熔喷法直接制成无纺布,也可先纺制成短纤维,再经干法或湿法成网制得无纺布。PLA 无纺布可用于农业、园艺等方面,如除草用布等,在医疗卫生方面可用作手术衣、口罩等; 在生活用品方面,可用作衣料、地毯、儿童尿布等。另外,PLA 还可以用在家电领域、玩具市场等,如用于家电外壳、刚性包装、透明窗口膜、各种儿童玩具等。

据统计,PLA 消费市场正在以15% /年的速度增长。我国目前产能约5 000 t /a,2011 年,我国进口PLA 切片约6 400 t /a,出口PLA 切片约600 t /a,国内消费量约10 800 t /a,进口量约占需求量的53.7%,随着我国经济的快速发展,这一数字将会进一步提高。从目前PLA 产业发展来看,虽然PLA 材料具有独特的有优越性能,市场前景十分看好,但PLA 的大批量生产仍受到高生产成本的制约。大规模工业生产可以使PLA 在与石油基聚合物的竞争中取得一些优势。如果解决了成本问题,PLA 将会带来一场真正的塑料革命。

3、PLA的分类

聚乳酸的单体是2 -羟基丙酸( 乳酸) ,聚乳酸的结构是脱水乳酸单元的不断重复,由于在乳酸的分子结构中含有一个不对称的碳原子,从而具有旋光性,乳酸有两种旋光异构体,左旋乳酸及右旋乳酸;聚乳酸及单体的结构式如下:

图1 聚乳酸及其单体的结构式

由于单体的结构不同,故聚乳酸也存在着几种旋光异构体,主要包括: PLLA、次磷双乳酸( PDLA)和PDLLA。结构决定性质,PLLA 和PDLA 均是半结晶性的聚合物,具有较高的拉伸强度,但其冲击韧性较差,断裂伸长率较低,降解吸收速度

慢; 而PDLLA 是非结晶性聚合物,其拉伸强度明显低于前者,但其降解速度较快。

4、PLA 的合成

在实验室对于聚乳酸合成的目的在于了解掌握聚乳酸的合成方法及原理,对聚乳

酸的结构、分子量及产率等参数进行测试分析,从而提出基本的合成工艺条件及

应用数据。当前节能环保意识备受人们关注,尤其是随着我国“限塑令”的发布,

使可自降解替代性塑料的开发生产迫在眉睫。聚乳酸作为一种生物降解材料,其

原料乳酸来源丰富,且具有良好物理性能,是石油基塑料的理想替代材料。但影

响聚乳酸塑料广泛应用的最大问题是合成工艺流程复杂,成本较高。

以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通

过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA 。PLA 的合成通常有:

(1)直接缩聚法【3-4】。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条

件下,采用溶剂使之脱水聚合成PLA 。该法生产工艺简单、成本低,且合成的PLA

中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到

高相对分子质量的PLA 。具体反应式如下【5】:

nHOCH(CH 3)COOH

一OH + (n-1)H 2O

H 一[OCH(CH

3)CO]n 一OH 3)CO]n 一OH + H 2O

若用直接缩聚法获得高相对分子质量PLA .反应中须注意:水的有效脱除.动力

学控制.抑制解聚。陈佑宁等【6】采用溶液缩聚法直接合成得到黏均分子量为12 320

的PLA 。Achmad 等【4】在真空条件下直接缩聚制得PLA .降低了生产成本。

(2)间接聚合法。由乳酸脱水缩合生成丙交酯再开环聚合成PLA 。

这种反应可以合成相对分子质量高达(7~10)x105的PLA 。许多学者仔细研究了丙

交酯开环聚合的条件(包括催化剂浓度,单体纯度,表面活性剂,聚合真空度、

温度、时间等)【7】,其中,最主要的影响因素是丙交酯的纯化及催化剂的选择。

开环聚合所朋的催化剂不同。聚合机理也不同。到日前为止。人们提出了3种丙

交酯开环聚合的反应机理:阴离子型开环聚合、阳离子型开环聚合、配位开环聚

合。

对于(1)、(2)两种方法的比较:

直接脱水缩合生产聚乳酸的方法具有反应成本低,聚合工艺操作简单,但反应需要的时间长,而且因为反应体系中存在乳酸、水、丙交酯和聚酯的平衡,致使合成的聚乳酸材料的相对分子质量不高、强度极低、易分解;

而经丙交酯开环聚合制备聚乳酸的过程虽然复杂,但该法可以得到相对分子质量相对较高的聚乳酸材料。

(3)固相聚合法。将直接缩聚法得到的低相对分子质量树脂在减压真空、温度为玻璃化转变温度和熔点之间的条件下聚合得到,以提高其聚合度,增加相对分子质量,从而提高材料强度和加工性能。

目前国内外对聚乳酸的研究都转向直接缩聚法制聚乳酸。此外,最近国外正尝试用生物合成法制取聚乳酸,即培养、筛选合适的生物,在体内直接合成聚乳酸,并通过一定的方法提取聚乳酸。该法可实现清洁生产,同时可进一步降低生产成本、提高产品的各项性能指标,扩大市场应用范围。

5、PLA的改性

由于PLA在性质上存在许多局限性而限制了它的应用,同时在实际应用中还有一些特殊的功能性需要,这都促使人们对PLA材料的改性展开深入研究。国内外对聚乳酸材料的改性主要研究方法与内容如下:

(1) 共混法提高力学性能

聚乳酸材料的硬、脆性是其显著的缺点。为了改善这一力学性能,报道中多见的改性方法是共混法。在聚乳酸中加入增塑剂,如聚乙二醇(PEG),聚丙醇(PPG)等。但由于聚乳酸与一般的石油基高分子相容性不好,研究中发现,增塑剂会与基体树脂发生相分离,随放置时间延长而严重,塑性变形率提高不大,力学强度反而急剧下降。另一类方法是填充、增强,将聚乳酸与改性后的淀粉,纤维素及其微晶、晶须,玻璃微珠共混,以提高断裂韧性和拉伸强度。发现由于聚乳酸与填充材料的相容性、极性、结晶性的差别,低界面结合强度成为主要问题。相比于基体相,界面结合区更易于发生降解或水解,使得材料整体的降解速率和剩余强度不可控。此外,纳米材料也被用于聚乳酸的改性。纳米粒子作为结晶成核剂,增加了聚乳酸的结晶速度和结晶度,减小品粒尺寸【8】,使力学性能得到改善。国内有人采用纳米粘土插层的方法增加材料韧性,提高冲击强度。

(2)交联法提高耐热性

聚乳酸的结晶速度缓慢,软化温度较低,使其应用领域受到限制。人们通过加入成核剂的方法缩短材料成型中的定型时间,改善材料的耐热性。成核剂的种类包括聚乙二醇、乳酸低聚物、低分子酯肪酸、酯肪胺和纳米填充剂。结晶度增大有利于提高材料力学强度和耐热稳定性,但发现,由于聚乳酸分子链上有-C-O-基,使得分子的对称性下降,羧基上的氧原子很容易与相邻链上的氢原子发生氢键作用,影响分子链扩散速度,使得结晶速度非常缓慢,力学强度和热稳定性的提高也是非常有限的。

(3)增塑改性

增塑改性是在高聚物中添加一定量的高沸点、低挥发性的低相对分子质量物质,从而改善其机械性能与加工性能。

增塑剂是一种加入到材料(通常是塑料、树脂或弹性体)中以改进它们的加工性、可塑性、柔韧性的物质. 增塑剂的加入可以降低材料的熔体粘度、玻璃化转变温度(Tg)、弹性模量等.通过增塑可以使聚合物材料更易于产生可逆形变,防止制品在实际使用条件下形变时发生脆性破裂.增塑改性可以分为两种基本方法:一是分子增塑,指的是加入与聚合物达到分子水平混溶的添加物(主要是低分子物)

来改变聚合物的力学性能.二是结构增塑,指的是加入少量实际上与聚合物不相混溶的低分子物,使聚合物力学性能显著改变的效应.基本原理是加入的增塑剂分布于聚合物超分子结构基元之间,促进大分子聚集体之间的相对滑移重排,增塑剂以分子尺寸厚度的薄层分布于超分子结构单元之间从而起到特殊的“润滑”作用。

目前,许多学者研究了柠檬酸酯醚、低聚物聚乙二醇(PEG)、丙三醇、聚丙二醇等增塑剂改善聚乳酸的柔韧性和抗冲击性能。柠檬酸酯类增塑剂被认为是环保型无毒增塑剂,呵用于与食品直接接触的塑料制品中,因此受到较大关注。尹静波等【9】叫选用柠檬酸酯系列增塑剂改性聚乳酸,通过相关测试表明,柠檬酸酯类增塑剂均能有效降低聚乳酸的玻璃化转变温度,克服脆性断裂,改善加工性能。并且在对此类增塑剂比较后得出:含有羟基并且构成酯的醇相对分子质量越低的柠檬酸酯能明显降低聚乳酸的玻璃化转变温度,提高韧性。但同时相对分子质量越低,越易迁移,会使材料的耐水性变差。

(4)调节降解性能

聚乳酸的降解和老化过程受制品的几何形状(主要是拉伸取向的影响)、结晶性、制造过程热历史、单体共聚比等因素的影响。为了控制聚乳酸具有特定的降解速率和剩余强度,共聚的方法主要有左旋单体与少量消旋体共聚,其中消旋体可以阻碍结晶,加快降解速率;而左旋部分可以形成细小晶粒以提供强度。但共聚物的结晶速率会变得更慢,且总体晶片厚度下降【10】。

6、PLA 产业目前存在的问题

PLA 的原料为乳酸,乳酸一般由玉米等谷物经过发酵生成,但目前我国为避免工业争抢粮食作物,对玉米生产乳酸、乙醇等项目限制审批,因此无法用玉米等谷物进行大规模生产乳酸,这样造成乳酸原料价格高居不下,从而进一步限制了PLA 的大规模生产,因此需要从木薯、农作物秸秆等生产乳酸或者研究从石油产品生产乳酸的可行性,从而拓宽原材料来源,最大限度地降低乳酸的价格。

目前的PLA 生成工艺技术,约1.5 t 乳酸生产1t PLA,在生成过程中其原料的消耗较高,需要进一步优化生产工艺,简化和缩短工艺流程,降低原料消耗,从而降低PLA 产品价格。国家需要加大对PLA 产业的扶持力度,可以从税收、政策、清洁能源补贴等各方面进行扶持,从而促进PLA 产业的大规模生产,从而实现塑料产业革命。

结论

聚乳酸是一种具有良好生物相容性、生物降解性的生物医用高分子材料,具有广泛的用途,对其合成、成型、改性、应用的研究是目前功能高分子材料研究的重要领域之一。随着对聚乳酸研究的深入进行,聚乳酸制品趋于向高性能化和复合功能化发展,应用范围也将扩展到诸多领域。而当进一步突破工业化应用的壁垒后,聚乳酸这一材料将会为人类和地球的健康做出巨大的贡献

聚乳酸材料在医学领域具有其他材料无可替代的作用,对它的研究将会不断深入。对于聚乳酸的合成及改性研究方向作如下展望。

(1)继续改进聚乳酸的合成工艺条件,使用无毒或低残留量的催化剂,生产出高分子量和超高分子量的聚乳酸,并简化和缩短工艺流程,降低聚乳酸材料的成本。

(2)聚乳酸改性的研究还将是聚乳酸合成的主流,并更集中在利用众多聚合物组成单体的独特性能,尝试用新材料对聚乳酸进行改性,在克服原有缺点的基础上开发出新用途的聚乳酸材料。现在许多合成共聚物的PLA改性方法,都以价格昂贵的丙交酯为原料随着乳酸直接聚合法合成PLA类生物降解材料研究的深入.各种从结构上对PLA的改性研究.应考虑使用简单易行的乳酸直接熔融聚合法进行,从而降低共聚物成本,为将来的实际应用奠定基础。

(3)因聚乳酸的力学性能及功能尚不能满足某些医学场合的使用,对其特殊成型、共聚、共混、复合等方式的改性显得尤为重要。

(4)PLA树脂经增塑、共聚、共混或复合改性后,其力学性能、机械性能、加工性能、降解性能得到改善。

随着低碳经济时代的来临及生物基材料产业的逐渐兴起,人们的环保意识不断增强,生物基材料与生物可降解材料成为全世界关注的热点。而聚乳酸是来源于可再生植物淀粉的生物材料,所以制品也具有生物降解性和生物相容性,也可以具备优良的机械性能,可以替代传统的石油基的塑料,减轻对地球的负担。虽然现在相较于传统石油基工程塑料还具有价格昂贵,韧性不足等问题,但是从长远来看,随着科技的发展,成本的降低和性能的提升,必然使生物降解材料成为未来塑料行业中的主力产品。

参考文献

【1】Cutright DE, et al. Histologic comparison of polylactic and polyglycolic acid sutures[J]. Oral Surg.,1971,32(1):165- 173.

【2】吴之中,张政朴等.聚乳酸的合成降解及在骨折内固定材料的应用[J].高分子通报. 2000(1): 73-78.

【3】Cheng Yanling,Deng Shaob,Chen Paul,et a1.Polylacticacid(PLA)synthesis and modifications[J].Frontiers of Chemi—stry in China,2009,4(3):259—264.【4】Achmad F,Yamane K,Quan S,et a1.Synthesis of polylaetieacid by direct polycondensation under vacuum without catalysts,solventsandinitiators[J].Chemical Engineering Journal,2009,15l(1):342-350.

【5】朱莉芳,闫玉华.聚乳酸的合成与降解机理.生物骨科材料与临床研究,2006,3(1):42—45

【6】陈佑宁,樊国栋,高艳华.溶液缩聚法直接合成聚乳酸的研究[J].化工新型材料,2007,35(7):85—87.

【7】李南,姜文芳,赵京波,等.BL一丙交酯的制备及在二甲苯溶液中的开环聚合[J].高分子材料科学与工程,2005,21(2):73—76.

【8】钱欣,田怡.聚乙二醇增塑聚乳酸的等温结晶动力学研究[J].塑料工业2006,34(增刊):221.

【9】尹静波,鲁晓春,曹燕琳.柠檬酸酯增塑改性聚乳酸[J].高分子材料科学与工程,2008,24(1):151—154.

【10】关颖,王洋,李琳.聚乳酸合成技术及其新产品开发[J].化学工业,2014,32( 9) : 31 - 37.

【11】门丹丹,王金涛,陈金周.乳酸-氨基酸共聚物的制备及研究发展[J].化工新型材料,2013,41 ( 4) :172 - 174.

【12】Jason Olejniczak,Minnie Chan,Adah Almutairi.Light-Triggered Intramolecular Cyclization in Poly( lactic -co -glycolic acid) -Based Polymers for Controlled Degradation[J].Macromolecules,2015,48 ( 10 ) : 3166 -3172.

【13】Eda Acik Cumkur,Touffik Baouz,Ulku Yilmazer.Poly( lactic acid) – layered silicate nanocomposites: Theeffects of modifier and compatibilizer on the morphologyand mechanical properties[J].Journal of Applied PolymerScience,2015,132( 38) : 42553( 1 -12)

【14】X.Li,C.L.Chu,L.Liu,et al.Biodegradable poly -

lactic acid based -composite reinforced unidirectionallywith high -strength magnesium alloy wires[J].Biomaterials,2015,49: 135 -144.

【15】M.Shayan,H.Azizi,I.Ghasemi,et al.Effect of modified

starch and nanoclay particles on biodegradabilityand mechanical properties of cross

-linked poly lacticacid[J].Carbohydrate Polymers,2015,124: 237-244.【16】葛昭,于敏敏,钱进,等.界面改性对聚乳酸/Lyocell纤维复合材料结构与性能的影响[J].中国塑料,2015,29( 1) : 58 - 63.

【17】王利平,侯家瑞,段咏欣,等.界面增容剂对丁腈橡胶

增韧聚乳酸体系性能的影响[J].高分子学报,2014(7) : 914 - 921.【18】Geiser, K. Materials Matter: Towards a Sustainable MaterialsPolicy; MIT Press: Cambridge, 2001.

【19】Chandrashekhara, K.; Sundararaman, S.; Flanigan, V.; Kapila, S.Affordable Composites Using Renewable Materials. Mater. Sci. Eng., A

2005, 2?6.

【20】任杰,董博.聚乳酸纤维制备的研究进展.材料导报,2006,20 ( 2) : 82.

【21】钱以肱.聚乳酸及其市场化发展.合成纤维,2004,33 ( 1) : 5.【22】薛敏敏.聚乳酸纤维及其应用.合成纤维.2006,35 ( 9) : 46.【23】赵耀明,张军,麦杭珍.直接缩聚法合成聚乳酸的研究.合成纤维,2001,30 ( 3) : 3 - 5.

【24】 Mohanty, A. K.; Misra, M. Drzal, L. T. Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, 2005.

【25】麦杭珍,赵耀明,聂凤明.可生物降解聚乳酸纤维的纺丝成形研究进展.合成纤维工业,2000,23 ( 4) : 43 - 45.

【26】张博,王双睿.可生物降解聚乳酸纤维的新进展.聚酯工业,2003,16 ( 5) : 5 - 8.

【27】张旺玺,张慧勤.聚乳酸的合成及应用.合成技术及应用,2005,20 ( 2) : 35 - 38.

【28】赵崇峰,封瑞江.四种乳酸聚合方法的比较.合成纤维,2005,34 ( 4) : 12 - 14.

【29】吴景梅,吴若峰.溶液聚合法合成聚乳酸.合成纤维,2006,35 ( 1) : 14 - 15.

【30】麦杭珍,赵耀明,聂凤明.可生物降解聚乳酸纤维的纺丝成形研究进展.合成纤维工业,2000,23 ( 8) : 46.

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

聚乳酸缓释膜

聚乳酸改性膜缓释性及降解性 一. 聚乳酸及其共聚改性膜的合成 1.以两种构型的聚乳酸为单体合成高分子量的有规立构嵌段D,L-聚乳酸:首先熔融缩聚合成较低分子量的D-聚乳酸和L-聚乳酸,然后将这两种构型的聚乳酸1:1等量熔融状态下混合,以形成立体配合物,最后使熔融态的立体配合物降温进行固相聚合反应,非晶态的聚乳酸链延长为高分子量的有规嵌段外消旋聚乳酸; 2.PEG与丙交酯共聚改性,制得相对分子质量高的嵌段共聚物PLA-PEG-PLA。 研究表明:随着PEG质量分数的增加,玻璃化转变温度降低; 3. 淀粉和淀粉衍生物的脂肪族聚酯接枝共聚物; 4. 壳聚糖接枝改性聚乳酸,聚乳酸能接枝到壳聚糖的氨基或羟基上,制得亲水 性/ 疏水性两亲可降解材料; 三.聚乳酸及其改性膜的制备 1)聚乳酸的溶液浇铸法成膜:分别称取适量聚乳酸将其溶解在三氯甲烷中,配成ω=0.02的三氯甲烷溶液,用3#砂芯漏斗过滤,静置脱泡后,将完全溶解的聚乳酸溶液浇铸在4cm38 cm的玻璃膜具中,在室温下自然干燥48h后揭膜,再置于真空烘箱中室温下抽48 h,所得膜放于干燥器中备用。 2)聚乳酸的溶剂挥发成膜法,聚乳酸或聚乙二醇改性聚乳酸薄膜的制备采用溶剂挥发成膜法,即将聚合物用丙酮溶解,缓慢倾倒在聚四氟乙烯模板上,在通风柜中室温干燥24h,再放入40℃真空烘箱干燥24h,脱膜密封保存备用。 3)用1:1的无水酒精溶液,清洗玻璃板,擦净并放入电热恒温干燥箱中干燥。将铸膜液倒在干燥后的玻璃板上,使之流涎盖满玻璃片,并用刮刀垂直玻璃板均匀用力向前推动刮刀,玻璃板上就留有一层薄膜,膜厚控制在0.5~1mm之间。为保证制成的膜厚度均匀,我们在玻璃板的两侧粘上两片盖玻片做两个突起,突起部分厚度在0.5~lmm之间,刮刀架在突起部分向前推动,这样制成的膜均匀性较好。 将玻璃板放在千燥箱中干燥,将温度调节至80℃,干燥8小时后将玻璃板从干燥箱中取出。然后用刮刀小心地将膜从玻璃权上取下,并保存于聚乙烯袋中以备后用。

聚乳酸

聚乳酸 单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 一、聚乳酸的优点 聚乳酸的优点主要有以下几方面: (1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。 (2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 (3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。 (4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。 (5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。 (6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,

新型可降解材料聚乳酸及如何延长其使用寿命

本科毕业论文(设计) 题目:新型可降解材料聚乳酸及如何延长其使用寿命 系院: 学生姓名: 学号: 专业: 年级: 完成日期: 指导教师:

摘要: 本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命

Abstract : This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook. Key words : of polylactic acid;synthesis;degradation;life

目录 引言 (5) 1 聚乳酸的生产方法 (6) 1.1 直接缩聚法 (6) 1.2 间接聚合法 (6) 2 聚乳酸的基本性能 (6) 3 聚乳酸的降解 (6) 3.1 聚乳酸的降解机理 (6) 3.2 影响聚乳酸降解的因素 (7) 4 提高其使用寿命的主要方法 (7) 4.1 加入抗氧化剂 ..................................... .. (7) 4.2 硝酸表面处理 (8) 4.3 酸性和干燥的环境 (8) 4.4 改变 PLA 的分子结构 (8) 5.结语 (9) 参考文献: (9)

引言 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。

聚乳酸

一、聚乳酸( Polylactic Acid , PLA) 是以玉米等农作物为原料, 经微生物发酵获得乳酸单体, 再通过聚合得到的生物降解高分子材料。它是一种热塑性聚酯,具有很好的生物降解性, 生物相容性和生物可吸收性, 降解后不会遗留任何环保问题, 又兼具胜于现有塑料聚乙烯、聚丙烯、聚苯乙烯等材料的优点, 被产业界定为新世纪最有发展前途的新型包装材料。 二、聚乳酸的合成方法有两种:直接缩聚法和开环聚合法。 1.直接缩聚法的主要特点是合成的聚乳酸可以不含催化剂,聚合工艺短,易分解且分子量小,但反应条件相对苛刻,对聚合单体的要求与普通缩聚单体的要求一致, 其所得聚乳酸产品性能差, 实用价值小。 2.开环聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚, 没有小分子水生成, 聚合设备简单。此法所得聚乳酸分子量高,且机械强度也高。 三、聚乳酸的原料来源都是农作物。 四、聚乳酸的优点: 1.具有良好的生物降解性。在常温下, 聚乳酸树脂可保持稳定的性能。在堆肥条件下( 56 —60℃, 湿度大于80—90%) 可在2—3 个月内经由微生物完全分解, 最终生成水和二氧化碳, 不污染环境。生产过程无污染。聚乳酸具有良好的生物相容性和生物可吸收性是因为聚乳酸的基本原料乳酸是人体固有的生理物质之一,对人体无毒无害无刺激性。 2.聚乳酸树脂是热塑性树脂, 具有良好的力学性质、机械性能、热塑性及成纤性, 耐油、气味阻隔方面也较好, 具有与聚酯相似的防渗透性, 与聚苯乙烯相似的光泽度、清晰度和加工性, 提供了比聚烯烃更低温度的可热合性。 3.可以采用通用塑料的通用设备进行挤出、注射、吹塑、拉伸、纺丝等加工成型, 且 加工方便。 4.聚乳酸是一种低能耗产品, 比以石油产品为原料生产的聚合物低30%—50%。 5.原料来自可再生的植物资源, 所有富含淀粉的农作物都能生成聚乳酸, 不消耗 不可再生的矿物资源, 也不增加二氧化碳的排放,符合循环经济原则, 利于社会可持续发展。 6.聚乳酸抑菌是因为聚乳酸薄膜在使用过程中表面可形成弱酸性环境,具有抑菌作 用。 五、聚乳酸弱点: 1.耐热温度太低,纯的聚乳酸软化点只有55℃, 这样低耐温的制品很容易发生变形或粘连, 这就严重限制了产品的应用。 2.聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性。 3.降解周期难以控制。 4.聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的 强度往往不能满足要求,抗冲击性差。 5.性能脆,缺乏柔性和弹性,极易弯曲变形。 6.乳酸价格以及聚合工艺决定了PLA 的成本较高。 六、近年来,为了提高材料力学性能、改善降解性能、降低成本等科研人员做了大量PLA 改

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

石墨烯_聚乳酸复合材料的制备与性能研究_谢元仲

石墨烯/聚乳酸复合材料的制备与性能研究 谢元仲,徐淑艳,张维丽,孟令馨 (东北林业大学,哈尔滨150040) 摘要:目的制备具有优异阻隔性能及热稳定性的聚乳酸薄膜材料。方法方法在聚乳酸中添加石墨烯对其进行改性。首先采用改进的Hummers 法将鳞片状石墨制备成氧化石墨烯,继而采用热剥离法将氧化石墨烯还原剥离为石墨烯,然后以聚乳酸为基材,还原后的石墨烯为增强相,采用流延法制备石墨烯/聚乳酸复合薄膜,并测试了其结构、热稳定性以及阻隔性能。结果结果红外分析表明,石墨被强氧化剂氧化后形成了以C —OH ,—COOH ,C —O —C 和C =O 等官能团形式存在的石墨层间化合物,还原后获得的石墨烯剥离充分;石墨烯/聚乳酸复合薄膜的热稳定性能和阻隔性能随石墨烯含量的增加而逐渐增强。结论结论在试验参数范围内,石墨烯/聚乳酸复合薄膜的热稳定性和阻隔性能优于聚乳酸薄膜。关键词:石墨烯;聚乳酸;阻隔性能;热稳定性中图分类号:TB484.9 文献标识码:A 文章编号:1001-3563(2016)09-0007-05 Preparation and Properties of Graphene and Polylactic Acid Composites XIE Yuan-zhong ,XU Shu-yan ,ZHANG Wei-li ,MENG Ling-xin (Northeast Forestry University ,Harbin 150040,China ) ABSTRACT :This work was aimed to obtain polylactic acid films with good barrier properties and thermal stability.Graphene was added into polylactic acid to modify it.Graphene oxide was prepared using the flaky graphite by the improved Hummers method.Graphene oxide was reduced to graphene by thermal stripping method.Grapheme/polylactic acid films were prepared with tape casting method,using polylactic acid as the substrate and graphene as the reinforcement.The structure,thermal stability and barrier properties of films were tested.Infra-red spectrogram showed that graphite intercalation compound with COOH,C =O,C —O —C and C —OH functional groups was formed when graphite was oxidized by the strong oxidizer,and graphene stripped sufficiently by reduction.The thermal stability performance and barrier properties of graphene and lactic acid composite films increased with the increasing graphene content.Within the scope of the test parameters,the thermal stability and barrier performance of the graphene/PLA composite films were better than those of polylactic acid film. KEY WORDS :graphene ;polylactic acid ;barrier properties ;thermal stability 收稿日期:2015-11-13 基金项目:中央高校基本科研业务费专项资金(2572015DY06) 作者简介:谢元仲(1989—),男,山东济宁人,东北林业大学硕士生,主攻包装材料阻隔性能。通讯作者:徐淑艳(1976—),女,辽宁朝阳人,博士,东北林业大学副教授,主要研究方向为包装材料。 包装的主要目的是保护内容物免受外界环境(如氧气、水蒸气、油脂等)的侵害,延长物品保质期,这就要求包装材料具有一定阻隔性能,尤其对氧气和水蒸气的阻隔性[1]。另外,高阻隔包装膜还应具有良好的透光性,内容物可见,能很好地展示商品。聚乳酸是 一种可完全生物降解的绿色包装材料,具有良好的力学性能、生物相容性、透光性,广泛应用于各种包装领域[2—5],但是,纯的聚乳酸膜阻隔性能较差,水蒸气和氧气很容易透过薄膜,且热稳定性差,易分解[6—8]。这些缺点使得聚乳酸无法满足作为高阻隔性包装材料的 包装工程 PACKAGING ENGINEERING 第37卷第9期2016年5月 7

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

聚乳酸的合成方法

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。 聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸介绍

聚乳酸介绍 PLA聚乳酸历史 聚乳酸PLA (Poly lactic acid)一种新的生物塑料材料,早在1932年Dupont的科学家Wallace Carothers在真空中将乳酸进行聚合,产生低分子量的聚合物,但是由于生产成本过高,直到1987年食品公司Cargill开始投资研发新的聚乳酸制造过程,Cargill随后于2001年与Dow合资进行商业化产量名为:Nature-Works的聚乳酸商品。由于聚乳酸材料同时有生体相容性与生物可分解性,因此在所有的可分解性塑料中占有42%的市场。由专利分析来看聚乳酸的用途,2005年DERWENT专利資料库中共有聚乳酸专利1740篇,其中医用专利542篇,设备方面专利517篇,包装方面专利293篇,纤维方面专利419篇。除生物可分解的特性外,聚乳酸的主要优势包括有良好的机械特性与其材料来源,聚乳酸的材料来源为淀粉,在今日原油价格上涨,石油储存量下降的环境之下,除具有环境保护的优势,也同时有能源经济的效益。比较聚乳酸与其他常规塑料的物性发現,聚乳酸的机械性质相當强韧,与聚苯乙烯、聚氯乙烯接近,韧度超过聚丙烯,用于包裝材料、医疗与纤维的潛力相當好,唯一影响其近一步取代塑料包裝材料的障碍是其生产成本,依照制造过程与規模不同,聚乳酸的生產成本目前为 20-28元/公斤,高于目前常规塑料的价格。已商业化生产的生物可分解塑料,可以看出聚乳酸在整個生物可分解塑料占有举足轻重的地位,而Cargill Dow LLC每年14万吨的聚乳酸产量則为世界最高。日本方面三井化學也開始规模化生产,预计该公司2008年聚乳酸的销售量可以超过30000吨。依照Frost Sullivan推测,全世界的生物可分解性塑料在2002年時的市场为12万公吨,到2010年可望成达到每年50.5~70万公吨,而如果按照以上各主要公司所公布的产能扩建预计更是大幅超过此数字,如德国的Inventa Fisher计划将其设备放大至每年80000吨,而Cargill Dow LLC更预计在2009年可以将其聚乳酸产能提升至每年45万公吨,可以看出其強大的商机与市场成长潛力。 什么是生物可分解材料 生物可分解材料(Biodegradable Materials),主要以天然高分子或聚酯种类为基质,一般以可不短重复取得的天然資源,如:微生物、植物、动物,所製成的一种聚合物。传統的塑胶材料不能被微生物分解成H2O和CO2,如:PE、PVC、PS、PP…等。生物可分解材料PLA的制品暴露在空气中时,並不会进行分解。但在有足够的湿度、氧气与适当的微生物条件下.存在的自然掩埋或堆肥环境中经过短短的20~45天,即可被微生物所分解成H2O和CO2,再次回归于自然环境中滋养植物成長。 PLA聚乳酸材料优点 ** 材料天然、无毒,透气性高, PLA制品经由美国FDA认可,可直接与食物接触。 (就算盛裝含有酸性,酒精成份之食材,也不会釋放任何危害人体之物質) ** 使用任何废弃物处理方式(如焚化、掩埋、回收、堆肥)皆不致对环境造成任何影响。 ** 可取代以石油为基質的传统塑胶材料,且有同类传统塑胶制品之物性,使用方法相同。 ** 丢弃后,经堆肥环境及掩埋处理可经由微生物完全分解 100%。

聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

材料化学结课论文汇总

新型可降解材料聚乳酸 摘要:随着时代的进步,科技的发展,我国在各方面都进入了高科技和新型功能材料的领域。比如说在功能材料应用这方面,我国已经引进并且也自己研发了许多新型功能材料,使我们的工业生产和日常生活都得到了实惠,也为我们提供了诸多方便。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。 关键词:聚乳酸;合成;降解;使用寿命 聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。 1 聚乳酸的生产方法 聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。 1.1直接缩聚法 直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。 1.2间接聚合法 间接聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚,没有小分子水生成,所以不需要进行抽真空排除小分子,聚合设备简单,此法所得聚乳酸分

子量高达数万乃至数百万,机械强度高。近年来,为便于工业化生产,主要集中在开环聚合的高效催化体系,新型结构和组成的共聚物的合成等方面的研究,以制备更高分子量的聚乳酸。 2 聚乳酸的基本性能 聚乳酸是其中一种研究较多和性能较好的可生物降解的高分子材料。乳酸有非常好的透明性,可在牛物体内分解、吸收,同时其力学性能可和通用塑料媲美。聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,对人体无害,具有良好的生物相容性。聚乳酸现已成为生物降解医用材料领域中最受重视的材料之一。目前,聚乳酸已被广泛应用于药物控制释放材料、免拆手术缝合线和注射用微胶囊、埋植剂、骨材料、眼科材料等。此外,聚乳酸还可用于农业、包装材料、日用杂品等领域。 3 聚乳酸的降解 乳酸是一种性能优异的生物降解材料,能被酸、碱、生物酶等降解,降解的最终产物是CO2和H2O,对环境无污染。早已公认为是最有前途的医用可降解高分子材料。 3.1聚乳酸的降解机理 PLA作为聚酯类材料,其降解分为简单水解降解和酶催化降解。简单水解降解是酯化反应的逆反应,起始于水的吸收,小分子的水移至样品的表面,扩散进入酯键或亲水基团的周围。在介质中酸、碱的作用下,酯键发生自由水解断裂,样品的数均分子量缓慢降低,当分子量降低到一定程度,样品开始溶解,生成可溶的降解产物。 3.2 影响聚乳酸降解的因素 聚乳酸所处环境对其降解有很大关系,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解,主要的因素有微生物、酶、聚合结构,此外如氧的存在与否、pH值、温度、湿度等也对其有影响。

聚乳酸项目申报材料

聚乳酸项目 申报材料 规划设计/投资分析/产业运营

聚乳酸项目申报材料 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 该聚乳酸项目计划总投资9496.50万元,其中:固定资产投资6449.34万元,占项目总投资的67.91%;流动资金3047.16万元,占项目总投资的32.09%。 达产年营业收入21523.00万元,总成本费用17199.17万元,税金及附加175.49万元,利润总额4323.83万元,利税总额5095.71万元,税后净利润3242.87万元,达产年纳税总额1852.84万元;达产年投资利润率45.53%,投资利税率53.66%,投资回报率34.15%,全部投资回收期4.43年,提供就业职位329个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

聚乳酸项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

聚乳酸综述

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言 聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。 1、聚乳酸的研究背景 在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用。因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面 润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究; 80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法【2】。2、PLA 市场应用概况

聚乳酸的性能与工艺技术

聚乳酸 聚乳酸(PLA)是利用有机酸乳酸为原料生产的新型聚酯材料,具有胜于现有塑料聚乙烯、聚丙烯、聚苯乙烯等材料的优点,被产业界定为新世纪最有发展前途的新型包装材料,是环保包装材料的-颗明星,在未来-将有望代替聚乙烯、聚丙烯、聚苯乙烯等材料用于塑料制品,应用前景广阔。 聚乳酸的性能 聚乳酸有良好的生物可降解性,使用后能被自然界中微生物完全降解,用它制成的各种制品埋在土壤中6至12个月即可完成自动降解。它使用后的废物埋在土中或水中,可在微生物分解下生成碳酸气和水,它们在阳光下,通过光合作用又会生成起始原料淀粉。这样经过一个循环过程既能重新得到聚乳酸初始原料淀粉,又借助光合作用减少了空气中二氧化碳的含量。 聚乳酸有良好的机械性能及物理性能,适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进耐口工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 聚乳酸有良好的相容性与可降解性,在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低子聚乳酸作药物缓释包装剂等。 聚乳酸还是一种低能耗产品,比以石油产品为原料生产的聚合物低30%~50%。预计在不可再生的石油资源枯竭期到来之前,石油及其衍生物市场价格暴涨,而可再生的产品必将成为全球范围的紧俏消费品。 聚乳酸的工业化生产 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。美国LLC公司生产聚乳酸工艺为:玉米淀粉经水解为葡萄糖,再用乳酸杆菌厌氧发酵,发酵过程用液碱中和生成乳酸,发酵液经净化后,用电渗析工艺,制成纯度达99.5%的L-乳酸。由乳酸制PLA生产工艺有:(1)直接缩聚法,在真空下使用溶剂使脱水缩聚。(2)非溶剂法,使乳酸生成环状二聚体丙交酯,在开环缩聚成PLA。

高分子材料题库

光致变色材料 一、填空 1.光致变色材料的光化学过程变色基本原理是:顺反异构反应,氧化还原反应,离解反应,环化反应,氢转移互变异构化反应。 二、问答 1、光致变色的定义和基本特征: 答:定义:光色基团的化合物受一定波长的光照射时发生颜色变化,而在另一波长的光或热的作用下又恢复到原来的颜色,这种可逆的变色现象称为光色互变或光致变色。 基本特征:将变色前的无色状态记A,变色后的有颜色状态为B。 (1)A 和B 在一定条件下都能够稳定存在 (2)A 和B的视觉颜色显著不同 (3)A 和B 之间的颜色变化是可逆的 EV A的作业 一、简答 1、EV A是什么?其中E、V A各是什么? 2、马来酰亚胺接枝改性EV A热熔胶的反应方程式

答案: 1、EV A全称乙烯醋酸乙烯共聚物,其中E是乙烯,V A是醋酸乙烯。 2、

PMMA 一、简答题 1.什么是本体聚合;以PMMA为例写出本体聚合反应机理。 本体聚合系指仅有单体和少量引发剂或在热、光、辐射等条件下进行的聚合反应。 引发剂的分解: 链引发: 链增长: 链终止: A、偶合终止

B、歧化终止 二、填空题 1.在聚合反应中引发剂有主要有__、__、___、___ 有机过氧化物引发剂、无机过氧化物引发剂、偶氮类引发剂、氧化还原类引发剂 三、名词解释 均聚物:由一种单体聚合得到聚合物 共聚物:由两种或两种以上单体得到的聚合物 四、判断题 1.一般认为氧指数<22属于易燃材料(对) 2.聚甲基丙烯酸甲酯分子链呈无规立构,所以它具有很高的结晶度 (错) 聚氨酯涂料 一、填空题 1.聚氨酯是指主链上含有重复的__________基团的大分子化合物,英文名称___________,简称__________。

相关文档