文档库 最新最全的文档下载
当前位置:文档库 › 热电厂循环水余热利用项目可行性研究报告

热电厂循环水余热利用项目可行性研究报告

热电厂循环水余热利用项目可行性研究报告
热电厂循环水余热利用项目可行性研究报告

某某县热电厂

循环水余热利用项目可行性研究报告

2000年2月1日

目录

概述 (1)

1.企业的描述 (3)

2.工艺现状和相关的能耗情况 (3)

3.建议的项目 (4)

4.期望的能耗 (5)

5.投资估算 (6)

6.预计运行费用 (7)

7.预计节能效益 (7)

8.节能效果验证 (7)

9.存在的设备供货商 (8)

10.存在的设备安装承包商 (8)

11.技术经济分析

12.主要设备材料清单

1、概述

1.1县城及企业概况

某某县隶属山东省日照市,位于山东半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻.

某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路.

该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂内在一九八五

年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。

1996-1998年生产经营情况表见表-1

表-1

2、存在问题

2.1热电厂存在问题

某某县热电厂的外供蒸汽基本上全部为工业用汽.随着市场经济的发展,部份采用热电厂蒸汽的工业用户由于生产的产品不能适销对路,或者是其他的原因停产、转产,造成了热电厂的外供蒸汽量逐渐下降,原有2×1500KW的背压汽轮发电机组就基本上能够满足外部负荷的需要, C6-3.43/0.981抽汽凝汽式汽轮发电机组基本上处于纯凝汽状态运行,系统效率较低,发电煤耗较高,严重影响了热电厂的经济效益.

2.2县城居民采暖存在问题

近几年来,某某县城的城市规模有了较大的发展,居民的居住水平也有了较大的提高,但是,大部分的单位仍沿独立的分散小锅炉进行供热的方式,这种方式供热存在以下3方面的问题:

2.2.1单锅炉吨位都很小,一在4t/h以下。其热效率太低,浪费了大量能源,又严重污染了环境,由于某些锅炉房设计不合理,管理水平差等原因,造成了供热质量低下等问题。

2.2.2 所有锅炉房都建在城区内,除尘效率很低,严重污染了城区环境,给城区人民的身体健康带来很大损害。

2.2.3 现状锅炉房大部分无继续扩建的能力,新建中的生活区尚末形成需要的城市热力网,随着住宅小区的大量兴建,城区内必然出现新的燃煤锅炉房,使本以恶劣的城市环境上加霜。

3、设计方案的确定

根据企业内部存在的对外供热不是造成经济效率不好的问题结合县城居民采暖存在的问题,本可行性研究提出采用抽汽凝汽式汽轮机在采暖期低真空运行供暖的方法,这样即增加了热电厂对外供热负荷问题,又取代了一批小型燃煤锅炉.不但具有较好的经济效益,而且具有较好的社会

效益.

该项目通过适当增加抽凝汽轮机组的进汽量、提高排汽压力和温度,使冷却汽轮机排汽的循环冷却水温度提高到70℃,由管道外供作为采暖热水,以回收原来经冷却塔排向大气的低温余热,达到节约能源、降低成本的目的。

该项目预计总投资1182万元。项目实施后,在发电量不变的情况下,年节标煤9242吨,与分散小锅炉供热相比每年可减排CO2 3500吨、SO2100吨。

该项目技术成熟,风险较小。因为该项目已成功地在山东省的几个热电厂等企业进行了实施,取得了很好的效益。

1. 案例企业的描述

某某县热电厂是集供热、发电于一体的国有中二型企业.该厂始建于1968年,该企业作为城市的

2. 工艺现状和相关的能耗情况

五莲热电厂现有UG-20/3.82型正转链条锅炉2台,UG-35/3.82-M11型正转链条锅炉2台,1.5MW背压式汽轮发电机组2套、6MW抽汽凝汽式汽轮发电机组1套。具备年供汽50万吨和年发电0.54亿kWh的生产能力。该企业三年来的供汽和发电量见表-2:

表-2

由于热电厂外部蒸汽负荷的减少,造成C6-3.43/0.981抽汽凝汽式汽轮发电机组基本上处于纯凝汽状态运行,下表为该机组在纯凝汽工况时的运行工况参数见表-3

表-3

3. 建议的项目

近几年来,随着城市规模的不断扩大,居民的居住水平也有了较大的提高.分散的小型燃煤锅炉不但热效率较低,而且消烟除尘设施不够完善,所以造成了能源的浪费和环境污染.同时,随着环保要求的不断提高,当地政府已明令取消小型燃煤锅炉,代之以集中供热.所以,至1999年,已有大量的机关、企事业单位的办公设施和居民住宅等待集中供热。针对以上的原因,本可行性研究提出采用热电厂抽汽凝汽式汽轮机在采暖期低真空运行供暖的方法,即解决了热电厂的热负荷问题,又取代了大量的小型燃煤锅炉。用适当提高汽轮机排汽压力和温度的方法来提高循环冷却水的温度,充分利用低温能源进行供热,提高发电机组的能源利用率,这项技术从1991年起在已被山东几个热电厂采用,并取得显著经济效益。

本项目拟将循环冷却水的余热输送到城东,实现该地区的集中供热。采取的主要技术措施如下:

(1)不改动汽轮机原有系统,适当增加抽凝汽轮机组的进汽量、提高排汽压力和温度,使冷却汽轮机排汽的循环冷却水温度提高到70℃,不经过冷却水塔降温,而由管道外供作为供暖热水,基本上消除了电厂的冷源损失,可将热电厂的全厂热效率由25%左右提高到80%以上。同时,由于低真空运行只是汽轮机的特殊变工况,汽机本体基本无需改动,并且可在低真空运行和正常的额定工况凝汽运行之间方便的切换。充分利用低品质的热能用于供暖,使高品质的蒸汽供生产使用。为了保证系统运行的安全性(汽机故障时管道的防冻),或在较寒冷的天气情况下增加供热能力,可在供暖循环水泵的出口增加尖峰热网加热器。

(2).冬季供暖时汽轮机原来的循环水泵停止向冷却塔送水,改由新增加的3台型号为10SA-6F 的单级双吸离心泵向热网供水,其中两台运行,一台备用。Q=600m3/h、H=62.5MH2O,电机功率N=155Kw。水泵的总功率比原冷却循环水泵增加约160kw。而C6-3.43/0.981汽轮机的冷油器和空气冷却器的冷却系统则需新增加型号为IS150-125-250的水泵两台,一台运行,一台备用.该水泵的性能如下:Q=200m3/h、H=20MH2O,电机功率N=18.5Kw。夏季则恢复原来的运行方式。

(3).热网循环水泵的出入口之间加设再循环管,做启动试运行时调试使用.热网循环泵安装在凝汽器的出口管路侧,使凝汽器不承受较高的压力,考虑到热用户和热电厂之间的高程差,凝汽器的水室侧仍需做加强处理,该问题已与设备生产厂家协商,所需费用已计入投资.

(4)为防止循环系统结垢,影响凝汽器的传热效果,系统的补充水应采用软化水,补水量按系统循环量的 2.5%计算,热电厂的化学水处理车间有足够的余量,补充水为来自一级除盐系统的阳离子交换器的出水.

(5) 设置两台型号为KL65-250A的变频补水泵作为系统定压补水使用.水泵的性能如下: Q=30.5m3/h、H=67MH2O,N=11KW.

(6)热水管道采用双管敷设,采用聚胺脂保温,外套高密度聚氯乙烯管保护,全部采用直埋方式敷设,管道的热伸长采用轴向型波纹补偿器补偿和自然补偿相结合的方式.并在各主要的分支处设分支阀门.热用户将自己的供暖管道与主管道连接即可。

(7) 该主管线自热电厂向东走350m,跨过解放路向南折150m,继续向东走约700m,再向南折150m,然后向东穿过人民路直至富强路,至富强路路后,管线沿富强路西侧向南走约2000m.

循环水供热管网采暖热用户表-4 表-4

4. 期望的能耗

改为低真空供热后,提高了汽轮机的排汽压力和温度,为不减少发电量,将相应增加汽轮

机的进汽量(增加的进汽量在汽机的允许范围之内)。

改造后冬季汽轮机低真空运行能耗状况见表-5

表-5

改造后回收蒸汽凝结热81.77×0.95(换热效率)=77.68GJ/h,冬季一个采暖期内回收余热77.68×120×24=2.237×105 GJ。

改造后汽轮机进汽量为38t/h,改造前进汽量为30.42t/h,改造后增加蒸汽量7.58 t/h。折合锅炉蒸发量为7.8t/h。

5. 投资估算

项目总投资1182万元,具体构成见表-6。

表-6 单位:万元人民币

6. 预计运行费用

改为低真空供热后,锅炉辅机的电耗没有增加,其它的运行费用在改造前后也基本没有变化。改造后热网循环水泵、汽机的冷油器及空气冷却器的冷却水泵和热网补充水泵的电功率平均增加约190kw.管道的正常维护费用很小,可由电厂承担。

汽轮机改为低真空运行后增加进汽量7.8t/h。根据该厂98年冬季运行数据,锅炉吨蒸汽生产成本平均为45元/t.

则改造后冬季增加运行费用190×2880×0.59+7.8 t/h×45元/t×2880 h =133.3万元。

7. 预计节能及环保效益

7.1节能效益计算

改为低真空供热后回收蒸汽热量77.68GJ/h,管网热损失5%计算,则可供热用户的热量为77.68GJ/h×(1-0.05)=73.796GJ/h.若采暖建筑物的热负荷指标取63.8W/m2(55Kcal/m2),可供采暖面积为32×104平方米。

与分散的小锅炉供热相比采暖期供热的节约标煤耗量为1915t;同时由于发电标煤耗率的降低,在采暖期发电的节约标煤耗量为2880×(600-176)×6000/106=7327t.

7.2环境效益计算

由低真空供热的热量为73.796GJ/h,若小锅炉的平均热效率取0.65,原煤的低位发热量取23000KJ/h, 该项目年可减排CO2 3500吨、SO2 100吨。并减少了由此带来的烟尘的污染和原煤以及灰渣运输带来的污染.

8. 节能效果验证

在供热管道出水和回水温度、压力及流量仪表,并用以下方法确认该项目的节能量:

改造后利用仪表记录得出循环热水的出水、回水温度、压力和循环流量,查出热水出水、回水焓值,计算采暖供热量。计算公式如下:

采暖供热量

=(循环水出水焓值-循环水回水焓值)×热水循环总量(kJ)

年节标煤量

=采暖供热量×(集中供热的标煤耗率-分散供热的标煤耗率)+采暖期的发电量×(纯凝汽时的发电标煤耗率-供热时的发电标煤耗率)

9. 存在的设备供货商

潜在的设备供应商见表7:

表-7

上述产品在山东有良好的信誉,用户对其价格和性能满意。

10. 存在的设备安装承包商

本项目存在的设备安装商较多,在此不再赘述。安装时间将在2000年1月至2000年6月之间。对生产影响很小。

11. 技术经济分析

11.1主要技术经济指标

11.1.1投资总额及资金来源

该项目建设工程投资为1182万元。

11.1.2利润指标计算

供热单价13元/年平方米,项目还贷期后年售热总收入4474368元,总成本费用1571325元,销售利润2903043元,所得税958004元,税后利润1945039元。

利润指标计算详见“损益表”。

11.1.3 贷款偿还计算

项目建设贷款总额为8198342元,项目投资后,用企业基本折旧和税后利润偿还贷款,还款期为5年。

还款计算详见“还本付息表”。

11.1.4财务现金流量表计算

该项目全部投资收益率为25.87 %;全部投资回收期为3.56 年;贴现率为12%是,计算期20年净现值为7126894元。

全部投资现金流量表计算见“财务现金流量表(全部资金)”。

该项目自有资金收益率为42.79 %;自有资金回收期为6.21年;净现值为5705946元。

自有资金现金流量表计算见“财务现金流量表(自有资金)”。

11.2综合分析

由上述计算可以看出该项目经济上是可行的,全部投资收益率为25.87%,远高于行业基准收益率12%,且4年内可以收回全部资金。

该项目还有显著的社会效益,节约能源同时改善环境,并通过项目引进外资,加强该地区基础设施建设,为该地区工业生产发展创造良好基础。

12.主要设备材料清单

材料清单

设备表

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

我国火电厂循环冷却水处理技术的发展

收稿日期:  20030611作者简介:  罗奖合,男,教授级高级工程师,现任国电热工研究院科研业务部副主任兼国电水处理公司总经理。主要从事电厂化学水处理技术及药剂的研究开发。 我国火电厂 循环冷却水处理技术的发展 罗奖合1,李营根1,郭怀保2 (1.国电热工研究院,陕西西安 710032;2.苇湖梁发电有限责任公司,新疆乌鲁木齐 830002) [摘 要] 介绍电力体制改革后我国火电厂循环冷却水处理技术面临的主要问题和今后的发展方向。根 据目前的实际需要和可能,认为近期内各火电厂循环水的浓缩倍率应以大于3为控制目标,为此提出了8点建议:(1)完善循环水的外部处理方法;(2)开发新型水质稳定剂和高效复合配方;(3)加强凝汽器管防腐技术研究;(4)对城市污水用于循环水技术进行研究;(5)探索其它杀菌剂的应用;(6)加强自动控制技术的应用;(7)对运行中除垢技术进行研究;(8)循环水处理药剂应定点生产。[关键词] 火电厂;循环水;浓缩倍率;药剂;配方;凝汽器;结垢;腐蚀[中图分类号]TM621.8 [文献标识码]A [文章编号]1002 3364(2003)08 0009 03 五大发电集团公司成立后将实行“厂网分开、竟价上网”的方针。发电企业的生产要以节能降耗来降低发电成本,增强上网电价的竞争力。做好火电厂循环水处理工作,对于降低发电成本有着重要的作用。 1 火电厂循环冷却水处理技术面临的 主要问题 1.1 水资源日益紧张 我国水资源人均拥有量为2200m 3,只有世界平均水平的1/4,属缺水国家。且有限的水资源分配很不均匀,81%分布在长江流域及其以南地区。目前我国一方面水资源紧张,另一方面却又存在大量浪费水资源的情况。 火电厂是工业用水大户,其耗水量约占工业用水量的20%左右。在缺水的北方地区,水资源严重不足,使火电厂的建设规划和运行受到限制,因此节约用水已成为当务之急。据有关资料统计,我国凝汽式火电厂(采用冷却塔和水力输灰)的耗水率为1.64m 3/(s ?GW ),与国外水平(0.7~0.9)m 3/(s ?GW )差距较大,说明我国火电厂节水潜力很大。目前经原国家经 贸委批准的单位发电量取水量标准已正式实施,其目的在于限制火力发电厂的取水量,具体规定如下:采用循环冷却供水系统时单位发电量取水量定额,在单机容量<300MW 时为4.80m 3/(MW ?h );在单机容量≥300MW 时为3.84m 3/(MW ?h )。当前全国达到这一标准的火电厂还不到30%,因此节水空间巨大。 火电厂全厂用水的比例:循环冷却水系统补给水50%~80%,水力输灰用水20%~40%,锅炉补给水2%~4%。因此,火电厂节水工作的重点应在优化冷 却水和冲灰水系统的设计和运行方面,尽可能减少循环冷却系统的排污,提高循环冷却水的浓缩倍率,可取得良好的经济效益。但浓缩倍率的提高,会使结垢和腐蚀等问题更加突出,同时对循环水处理技术也提出了更高的要求。 1.2 环境保护的要求更为严格 进入21世纪以来,以环保为主题的绿色能源声势日高,为了保护水资源水质,减少工业排放废水及污水对水体造成的危害,环保部门对火力发电厂排放水量和水质提出了严格要求。就排放水量而言,将对火力 技术经济综述 热力发电?2003(8) 9

热电厂循环水余热利用项目可行性实施报告

某某县热电厂 循环水余热利用项目可行性研究报告 2000年2月1日

目录 概述 (2) 1.企业的描述 (4) 2.工艺现状和相关的能耗情况 (4) 3.建议的项目 (5) 4.期望的能耗 (7) 5.投资估算 (8) 6.预计运行费用 (8) 7.预计节能效益 (9) 8.节能效果验证 (9) 9.存在的设备供货商 (10) 10.存在的设备安装承包商 (10) 11.技术经济分析 12.主要设备材料清单

1、概述 1.1县城及企业概况 某某县隶属省日照市,位于半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻. 某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路. 该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂在一九八五年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。 1996-1998年生产经营情况表见表-1 表-1 2、存在问题

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

热电厂循环水处理合同

热电厂循环水处理合同 2011年7月31日FJW 提供 编号:()CXWYX XX -HT-第号 甲方:乙方: 甲、乙双方经协商,就将____________________________________ 循环 水处理事项委托与乙方,签订本合同。 第一条甲乙双方确认,本合同履行期间由※※探※※※物业管理有 限责任公司_________________________ 物业管理中心,代为行使甲方权利,履 行甲方义务。 第二条技术指标 腐蚀率:碳钢w 0. 125毫米/年铜及其合金w 0.0 05毫米/年污垢热阻:w 0.0006m2h°c/kcal 避免因水质恶化造成的结垢、腐蚀、菌藻滋生问题和停机事故。第三条甲 方责任 (一)应向乙方提供循环水的循环水量,系统容积、设备材质等基础技 术资料。 (二)确保在投药运行期间循环水不作它用,不易流、损失,不与生活 水相连。 (三)甲方应在乙方进行水处理工作之前,指派专人负责与乙方联系, 在实施投药作业期间,应有专人按乙方提出的工艺要求加药和日常管理。 第四条乙方责任 (一)为甲方提供复合阻垢缓蚀剂、清洗预膜剂、缓蚀钝化剂和杀菌 剂。将循环水水质调整到最佳状态,随时取水化验。 (二)为甲方提供日常管理工作方面的资料。在投药运行期间,进行现 场服务,冷却水水样分析每周一次,冷冻水每月取水一次,分析结果以书面形式通知甲方,协助甲方进行有效的管理。 (三)免费为甲方运送水处理剂。 (四)如甲方要求建立与水处理相关的分析化验室,乙方将免费培训化 验人员,也可以培训现场管理人员。 (五)如水处理现场出现异常现象,乙方应随即赶赴现场解决问题。 第五条服务项目 (一)循环冷却水处理

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

电厂水处理工艺流程及优化设计解析

电厂水处理工艺流程及优化设计解析 水的质量及出水受到水处理工艺的影响,发电厂的水处理工艺直接影响到发电质量和效率。对发电厂中的自然水进行有效处理,不仅可以提高水质和洁净水的产量,还能够提高发电厂发电效率。本文对电厂水处理工艺进行分析,并且提出了水处理工艺优化策略,旨在提高电厂发电效率。 1、概述 人们通过长期实践经验得出,发电厂热力设备的安全状况,发电厂是否能够经济运行受到热力系统中水品质的影响。天然水由于没有经过处理,含有很多杂质,含有杂质的水进入热力系统中的水汽循环系统,会对热力设备造成损害。要想确保热力系统中能够有良好的水质,就必须要对水进行净化处理,并且要对汽水质量进行严格监按控。 2、电厂水处理系统工艺流程 2.1 预处理 电厂锅炉水处理工艺的第一个流程就是给水预处理,这一流程主要包括混凝、沉淀澄清以及过滤,经过这几项工作将水中的悬浮物及胶体物质去除,确保水中悬浮物的含量低于5mg/L,最终得到澄清水。水经过预处理之后,还需要按照不同的用途进行深度处理。如在火力发电厂作为锅炉用水,还必须用反渗透及离子交换的方法去除水中溶解性的盐类;用加热、抽真空和鼓风的方法去除水中溶解性气

体。 2.2 补给水处理 发电厂补给水处理方式多采用反渗透和离子交换。超滤在补给水处理系统中可用作反渗透进水的前处理,它可有效地去除水中胶体等颗粒状物,使反渗透进水水质合格,减少反渗透膜的污染,延长反渗透膜的使用寿命。 2.3 凝结水处理 火力发电厂锅炉的给水由汽轮机凝结水和锅炉补给水组成,凝结水是锅炉给水的主要组成部分,它的量占锅炉给水总量的90%以上。凝结水中含有悬浮物和金属腐蚀物,在混床除盐前,可以用过滤的方法予以去除,以此来确保混床设备的有效运行。现阶段电厂中使用的过滤设备主要有覆盖过滤器和电磁过滤器两种。 2.4 循环水处理 电厂循环水处理工艺有很多种,比如加水稳计、加酸、石灰软化、弱酸离子软化以及膜处理技术等。在国家节水政策的要求下,火力发电厂尤其是采用干除灰工艺的火电厂,要在循环水处理这一环节进行节水,以提高循环水的浓缩倍率作为前提,使补充水量以及排污水量减少,进而能够减少新鲜水的使用量。 2.5废水处理

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

电厂循环冷却水系统中的问题解决知识讲解

电厂循环冷却水系统中的问题解决 2011年7月31日 FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3↓+CO2↑+H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应向右进行。 CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K),而钢材的导热系数为46.4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀 循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀 敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳

热电余热回收综合利用项目环评报告表

建设项目环境影响报告表 (试行) 项目名称:XXXX分公司余热回收综合利用项目 建设单位(盖章):唐山****热电有限责任公司 编制日期:2013年9月4日 国家环境保护总局制

《建设项目环境影响报告表》编制说明 《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。 1、项目名称――指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。 2、建设地点――指项目所在地详细地址,公路、铁路应填写起止地点。 3、行业类别――按国标填写 4、总投资――指项目投资总额。 5、主要环境保护目标――指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。 6、结论与建议――给出本项目清洁生产、达标排放和总量控制的分析结论确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。 7、预审意见――由行业主管部门填写答复意见,无主管部门项目,可不填。 8、审批意见――由负责审批该项目的环境保护行政主管部门批复。

建设项目基本情况 项目名称XXXX分公司余热回收综合利用项目 建设单位唐山****热电有限责任公司 法人代表联系人 通信地址河北省唐山市**冶区林西林西道 联系电话传真邮政编码建设地点河北省唐山市**冶区林西林西道 立项审批部门批准文号 建设性质技改√行业类别 及代码 4430热力生产和供应 占地面积(平方米) 绿化面积(平方米) 总投资(万元)2126 其中:环保投 资(万元) 2 环保投资占 总投资比例 0.1% 评价经费 (万元) 预期投产日期2013年12月 工程内容及规模: 1工程概况 项目背景:在国家大力推行节能减排能源政策的大背景下,火电厂丰富的余热资源正引起人们越来越多的关注。火力发电机组的绝大部分能量损失是由以下两部分构成的:一部分是锅炉烟气排放带走的热量,另一部分就是凝汽器循环水带走的热量。由于凝汽器循环水的温度往往只比环境温度高10℃左右,品质不高,故人们对这部分能量的利用不够重视,往往就直接排放掉了。这样不但造成了能量的浪费,还给环境带来了热污染。若以循环水为热源,采用水源热泵技术进行集中供热,就能很好地解决这个问题。 目前,XXXX分公司有三台25MW的抽凝式机组,抽汽供热已经基本达到了机组的极限。XXXX分公司热源供热能力为190MW,供热面积达350万平米,供热能力已经饱和,但所在区域供热面积却逐年增加,现有供热能力已不能满足正常需求。 本项目采用以消耗一部分温度较高的高位热能为代价,经过余热回收机组从低温热源吸取热量后再传热给采暖系统循环水,提高了循环水的温度再供给用户的供热技术。凝汽器冷却循环水进、出冷却塔的温度约为30/20℃,三台共有水量9900m3/h,水质干净,可以直接进入的余热回收机组,是非常好的余热资源。余热若按照温差8℃提取,可回收的余热量为92MW,若按照采暖指标60W/平米来计算,该余热全部开发出来可供暖150万平米,可为公司增加经济收益。因此,本项目的建设是可行的, 2

电厂化学水处理技术全解析

由于电厂中的某些热力设备可能受到水中一些物质的作用从而产生有害的成分,使设备发生腐蚀的现象,因此电厂安全运行和化学水处理系统具有直接的关系。水中杂质对设备的破坏决定了电厂中的水必须要经过一定的处理才能被使用,该处理就是电厂中的化学水处理系统。 1 电厂化学水处理技术发展的现状 1.1 电厂获得纯净除盐水主要采用的三种方式: (1)采用传统澄清、过滤+离子交换方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→阳离子交换床→除二氧化碳风机→中间水箱→阴离子交换床→阴阳离子交换床→树脂捕捉器→机组用水。 (2)采用反渗透+混床制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性碳滤器→精密过滤器→保安过滤器→高压泵→反渗透装置→中间水箱→混床装置→树脂捕捉器→除盐水箱。 (3)采用预处理、反渗透+EDI 制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→超滤装置→反渗透装置→反渗透水箱→EDI装置→微孔过滤器→除盐水箱。 以上3种水处理方式是目前电厂获得纯净除盐水的主要工艺,其他的水质净化流程大都是在以上3种制水方式的基础上进行不同组合而搭成的制水工艺流程。 1.2三种制水方式的优缺点: (1)第一种采用澄清、过滤+离子交换的优点在初期投资少,设备占用地方相对较少,其缺点是离子交换器失效需要酸、碱进行再生来恢复其交换容量,需大量耗费酸碱。再生所产生的废液需要中和排放,后期成本较高,容易对环境造成破坏。 (2)第二种采用反渗透+混床,这种制水工艺是化学制取超纯除盐水相对经济的方法,只需对混床进行再生,而且经过反渗透半除盐处理的水质较好,缓解了混床的失效频度。减少了再生需要的酸、碱用量,对环境的破坏相对较小。其缺点是在投资初期反渗透膜费用较大,但总的比较相对划算,多数电厂目前考虑接受这种制水工艺。 (3)第三种采用预处理、反渗透+EDI的制水方式也称全膜法制水。这种制水方法不需要用酸、碱进行再生就可以制取纯净除盐水,不会对环境造成破坏。是目前电厂最经济、最环保的化学制水工艺,但其缺点是设备初期投资相对前面两种制水方式过于昂贵。 2 电厂化学水处理措施 2.1 补给水的处理措施 电厂在生产锅炉的补给水处理中,关系到生产安全与效率。目前随着科学技术的快速发展,电厂关于环保节能的理念深入人心,过去传统的离子交换、澄清过滤或混凝等比较落后的技术已经逐渐被摒弃,现如今新的纤维材料广泛应用于过滤设备,不仅除去了胶体,微生物以及一些颗粒的悬浮物等,在过滤中也具有较强的吸附、截污能力,取得了相当好的效果。膜分离技术被采用,当前反参透占主导地位,反渗透技术能除去水中90%以上离子,如水中有机物、硅有较好的去除率。由于膜分离技术具有明显的优势,因此在锅炉补给水的处理中节约了大量的由于离子交换或澄清过滤等落后技术在运营时产生废水排放的费用,同时过去操作复杂和排放困难的许多问题也得到了改进。新的膜分离技术不仅达到了环保的要求。当水中的氯含量比较高时,可以采用活性碳过滤或者使用水质还原剂来进行处理。而混床在除盐处理的作用仍占有重要的位置,混床除盐技术相对成熟、可靠,混床的功能具有其他除盐所无法替代的作用。目前将超滤、反渗透装置和电渗析除盐技术有效的搭配,形成高效的除盐工艺,不需要酸、碱再生剂,只通过对水电离出来的H+和OH-即可完成再生的作用,从而完成电渗析的再生、除盐。这种制水工艺将是电厂化学制水的发展方向。

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

电厂循环水处理方案

电厂循环排污水处理方案 处理量:300m3/h 出水达到中水水质要求。 PH:6.5~9 浊度:5NTU BOD5:10mg/l COD cr:50mg/l 游离性余氯:末端大于0.2 总大肠菌群:小于3 氯化物:300mg/l 铁:0.3mg/l 锰:0.5mg/l 1、处理方案: 循环冷却水的排污水含有一定浓度的悬浮物、各种盐类、金属氧化物、阻垢剂等,为达到中水水质的要求,进行以下处理,先通过混凝处理,去除水中的悬浮物及金属氧化物等,再经过,过滤,超滤,消毒后,达到中水水质要求。 絮凝剂反冲系统 循环排污水→原水箱→原水泵→→超过滤装置→出水 2、设备及构筑物选型: 2.1预处理系统 2.1.1原水箱:150m3 2.1.2原水泵: 数量:3台 流量:150m3/h 扬程:28m 2.1.3絮凝剂加药系统两箱三泵 2.1.5.1多介质机械过滤器 1. 设备参数 1)形式与数量 形式:立式 数量:4台 2)设备出力 正常出力:80m3/h/台 3)运行流速 正常流速:10m/h 4)设备直径DN3200mm 5)本体材料Q235-A

衬里材料天然硫化橡胶1层3mm 6)设计压力:0.5Mpa 水压试验压力:0.8Mpa 7)设计温度0℃~50℃ 8)滤料 石英沙粒径/高度粒度0.45-0.6mm,层高800mm 无烟煤粒径/高度粒度1.0-1.5mm,层高400mm 9)反洗膨胀高度:300~600mm 10)水反洗强度:10~13L/m2.s 气洗压力:58.8KPa 气洗强度:10~20L/m2.s 11)运行压差(设备进出口) 正常出力压差0.02MPa 最大出力压差0.05MPa 12)本体材料Q235-A 13)控制方式手动控制 2. 内部装置 1)进水配水装置 形式:挡板喷淋 材料:Q235-A,内外衬塑 2)出水配水装置多孔板配水帽型 水帽材料:ABS水帽 3. 设备本体外部装置 1)设备人孔 形式:配吊盖人孔 数量:2套/台 直径:DN450 材料:Q235-A 2)设备窥视孔: 数量:1个/台 规格(长/宽):305mm/100mm 视镜材料:透明塑料板

火力发电厂循环水处理技术的发展趋势

第20期总第150期内蒙古科技与经济 No.20,the 150th issue  2007年10月Inner Mongolia Science Technology &Economy Oct.2007 火力发电厂循环水处理技术的发展趋势 Ξ 杨海燕1,包明山2,董素芹1 (1内蒙古农业大学职业技术学院,内蒙古包头 014109;2.乌海市蒙西电厂,内蒙古乌海 016014) 摘 要:本文分析了几种典型水处理技术的主要发展特点与趋势,从水处理工艺方面阐述火力电厂 水处理技术的最新进展与应用情况。 关键词:火电厂;水处理技术 中图分类号:TM621 文献标识码:A 文章编号:1007—6921(2007)20—0068—02 水,是一种宝贵的自然资源。水资源的日益匮乏已经逐渐制约着地区经济的发展。目前,能源工业发展迅速,火电厂大容量、高参数机组逐渐成为主力机组。众所周知,火电厂是工业中用水最大用户之一,因此,对其运行管理过程中优先考虑节水措施,努力实现对外零排放已势在必行。而在电厂工业用水中,火力发电厂耗水最多的是循环冷却系统的水损失,循环冷却水耗量占全电厂水耗量的60%~80%。提高循环冷却水的浓缩倍率、减少排污是实现电厂节水的重要环节。然而,提高浓缩倍率又会增大凝汽器冷却水通道内结垢与腐蚀的倾向,影响机组的安全经济运行。这样,从解决腐蚀问题和节水的角度优化选择循环水处理方案,提高循环水浓度倍率,就对我们在经济建设过程中如何合理保护利用水资源具有十分重要的意义。 从不同地域的电厂各自运行状况可知,循环水管道的腐蚀不仅与材质有关,也与水质有关,即不同材质在同一介质或同一材质在不同的介质中腐蚀速率不同。因此基建过程中设备选型和水质处理应统筹考虑。在以往的循环水设备选型问题上,只考虑水质对凝结器管材的影响,而忽视了循环水管道的腐蚀问题。循环水管路不但长,且埋在地下,腐蚀现象不易发现,处理和更换也比较困难。为避免循环水管道腐蚀,在设备选型时,应考虑循环水管道的材质,同时寻找适当的水处理方案。目前循环冷却水处理的方式多种多样,下面通过几种典型的处理方式的不断优化说明火力发电厂循环水处理技术的发展趋势。1 过滤法 过滤是最常用的旁流处理方式(通称旁滤),其处理量通常为循环水量的2%~5%,可以去除水中大部分悬浮固体、粘泥和微生物等,但不能降低水的硬度和含盐量,反冲洗时杂质将随反洗水排出系统。由于反冲洗水中杂质浓度比排污水高得多,所以系统排出的杂质多而消耗的水量少,即通过旁滤可使 排污量显著降低。大型循环冷却水系统一般采用以石英砂或无烟煤为滤料的重力无阀旁滤池,其滤速只能控制在10m/h 以下,而冷却水的悬浮物浓度只能控制在10mg/l 以下,过滤及占地面积的增大导致基础投资较大。与石英砂相比,纤维滤料具有孔隙率高、孔隙分布合理和比表面积大等特点,采用纤维滤料时滤速可高达20~85m/h 。由于纤维具有柔软性和可压缩性,故随着水流阻力的增大而逐渐被压缩,使滤料上层受力小、孔隙大,下层受力大、孔隙小,充分体现出纤维滤料纳污量大、过滤周期长的特点。纤维滤料过滤器通常需采用汽水反冲,借助气体的搅动使截留的悬浮物与滤料分离,再随反洗水排出。纤维过滤器对悬浮物、铁、锰、微生物粘泥都具有良好的截留作用,其过滤精度高,通常出水浊度<1N TU 。除此以外,还可与水中钙、镁离子进行离子交换,具有软化水质的功能。所以将这种旁滤法引入火力发电厂循环冷却水处理工艺值得我们关注。2 膜分离法 反渗透法和电渗析法是常见的两种膜分离方法,可以有效去除冷却水中的硬度、微生物等有害成分,有较高的脱盐率,水回收率可以达到75%~90%。由于渗透膜易被污染导致运行成本不断增大,通常先采用石灰软化法去除大部分硬度和悬浮物后,再采用反渗透法做进一步的降硬处理,以达到循环水补充水的水质要求。膜分离法的缺点是对进水水质要求苛刻,且运行过程中的压力波动易导致膜被破坏,水中的腐蚀产物和微生物易使预滤装置和反渗透膜堵塞、污染,频繁的清洗增大了运行费用,且一次性投入成本较高,故该法已经不适用于电厂这样的大型循环冷却水系统。3 化学沉淀软化法 通常采用石灰———纯碱软化法来降低水中的碳酸盐硬度和非碳酸盐硬度。在化学沉淀法中加入混凝剂可使呈胶体状态的CaCO 3和Mg (O H )2等形成 ? 86?Ξ 收稿日期:2007-06-12

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

热电厂循环水系统水处理技术的应用

热电厂循环水系统水处理技术的应用 摘要:独山子热电厂有三台发电机组,分不为25MW、25MW、50MW,合计发电量为100MW。有三台双曲线自然通风式冷却塔,总循环水量为10 300m3/h,保有水量为11 000 m3。自投产以来,一直未做处理,同时与鱼池相连,存在着较为严峻的腐蚀问题和生物粘泥问题,每年因腐蚀问题造成凝汽器铜管泄漏达200根,由于生物粘泥,每个季度都需要胶球清洗,有时需要高压水冲击,造成检修费用大大增加。因为冷却不下来,各用水部门在天热时加生水冷却,造成用水量增加。针对这些问题,我们做了全面调研,采取切断鱼池和化学加药的水处理技术方案,提高了汽轮机凝汽器的真空度和水资源的利用率,达到了经济发供电。 关键词:热电厂循环水水处理技术 1 前言 独山子热电厂有三台发电机组,分不为25MW、25MW、50MW,合计发电量为100MW。有三台双曲线自然通风式冷却塔,总循环水量为10 300m3/h,保有水量为11 000 m3。自投产以来,一直未做处理,同时与鱼池相连,存在着较为严峻的腐蚀问题和生物粘

泥问题,每年因腐蚀问题造成凝汽器铜管泄漏达200根,由于生物粘泥,每个季度都需要胶球清洗,有时需要高压水冲击,造成检修费用大大增加。因为冷却不下来,各用水部门在天热时加生水冷却,造成用水量增加。针对这些问题,我们做了全面调研,采取切断鱼池和化学加药的水处理技术方案,提高了汽轮机凝汽器的真空度和水资源的利用率,达到了经济发供电。 2 热电厂循环水系统概况 热电厂循环水系统运行参数见表1。 表1 热电厂循环水系统运行参数

3 水处理技术方案 3.1 杀菌剥离清洗 杀菌剥离的目的是去除附着在系统中的粘泥和粘泥附着物,切断其对药剂的隔绝作用,使药剂最大限度发挥其缓蚀阻垢作用。 A、集水池水位降至最低安全水位,以节约药剂用量。 B、投加粘泥剥离剂400mg/L进行杀菌剥离。 C、观看冷却塔顶部配水装置和塔内壁的粘泥、菌藻的去除情况,出水孔堵塞缓解情况,塔内壁绿苔消逝,通过测试循环水浊度变化,在浊度2~4小时不变,能够结束杀菌剥离。可开大补充水及排污阀进行置换排放。 测试项目:浊度,1次/2h;pH值,1次/h。 3.2 正常运行加药方案 (1)阻垢缓蚀剂:DL-6,投加浓度20mg/l。缓蚀阻垢剂在进行基础投加后,应用加药装置连续均匀地加入系统,以维持药剂浓度的平稳。假如药剂浓度波动较大,则对循环水系统运行不利,低则阻碍药剂使用效果,高则白费药剂。

相关文档