文档库 最新最全的文档下载
当前位置:文档库 › 高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何
高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何

一、选择题部分

1、(集训试题)过椭圆C :12

32

2=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足)

,延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为( )

A .]3

3

,

0(

B .]2

3,33(

C .)1,3

3

[

D .)1,2

3(

解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。又∵HQ=λPH ,所以

λ+-=11PQ HP ,所以由定比分点公式,可得:?????

=-+=

y

y x x 11)1(3λ

λ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33

[32132232

2∈-=-λλ

λ。故选C 。 2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D)

A .212y x =-

B .212y x =

C .216y x =-

D .216y x =

3.(2006年江苏)已知抛物线2

2y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△

POF 是直角三角形,则这样的点P 共有

( B )

()A 0个

()B 2个

()C 4个

()D 6个

4.(200 6天津)已知一条直线l 与双曲线122

22=-b

y a x (0>>a b )的两支分别相交于P 、Q 两

点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于( A )

(A )22a

b ab

- (B )22a b ab - (C )ab a b 2

2- (D )ab a b 22- 5. (2005全国)方程

13

cos 2cos 3

sin 2sin 2

2

=-+

-y x 表示的曲线是( )

A .焦点在x 轴上的椭圆

B .焦点在x 轴上的双曲线

C .焦点在y 轴上的椭圆

D .焦点在y 轴上的双曲线 解:),2

3cos()22cos(,22

322

0,32π

ππ

π

π

π->-∴<

-

<-<

∴>+ 即.3sin 2sin >又

,03cos 2cos ,03cos ,02cos ,32

,220>-∴<>∴<<<

<ππ

π方程表示的曲线是椭圆。

)

()4

232sin(232sin 22)3cos 2(cos )3sin 2(sin *++-=--- π

,0)4

232sin(.423243,432322,0232sin ,02322

>++∴<++<∴<+<<-∴<-<

-

π

ππππππ

.0)(<*∴式即∴-<-.3cos 2cos 3sin 2sin 曲线表示焦点在y 轴上的椭圆,选C 。

6.(2006年浙江省预赛)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。正确

答案为C 。

7.(2006年浙江省预赛)设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为3

1

,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为

(A)

31 (B) 3

2 (C) 1 (B) 34

. ( B )

解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得。为此,只要考虑在第一象限的面积就可以了。由题意可得,N M 的

图形在第一象限的面积为A =613121=-。因此N M 的图形面积为3

2

。 所以选(B )。

二、填空题部分

1.(200 6天津)已知椭圆122

22=+b

y a x (0>>b a ),长轴的两个端点为A 、B ,若椭圆上存

在点Q ,使

120=∠AQB ,则该椭圆的离心率e 的取值范围是

13

6

<≤e . 2.(2006年江苏)已知030330y x y x y ≥??-≥??+-≤?

,则22

x y +的最大值是 9 .

3.(2006吉林预赛)椭圆x 2

/a 2

+y 2

/b 2

=1(a >b >0)的右顶点为A ,上顶点为B ,左焦点为F ,若∠ABF 是直角,则这个椭圆的离心率为_________。

4、(2006陕西赛区预赛)若a ,b ,c 成等差数列,则直线ax +by +c = 0被椭圆

22

128

x y +=截得线段的中点的轨迹方程为 12

)1()21(22

2=++

-y x 5. (2005年浙江)根据指令,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α(2

α≤

≤)方向行走一段时间后,再向正北方向行走一段时

间,但何时改变方向不定。假定机器人行走速度为10米/分钟,则机器人行走2

分钟时的可能落点区域的面积是 。

【解】:如图,设机器人行走2分钟时的位置为P ) ,(y x 。设机器人改变方向

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中数学竞赛专题讲座:三角函数与向量

高中数学竞赛专题讲座:三角函数与向量 一、三角函数部分 1.(集训试题)在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且 A C , A B sin sin 都是方程log b x=log b (4x-4)的根,则△ABC (B ) A .是等腰三角形,但不是直角三角形 B .是直角三角形,但不是等腰三角形 C .是等腰直角三角形 D .不是等腰三角形,也不是直角三角形 解:由log b x=log b (4x-4)得:x 2-4x+4=0,所以x 1=x 2=2,故C=2A ,sinB=2sinA , 因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A ,∴3sinA-4sin 3A=2sinA , ∵sinA(1-4sin 2A)=0,又sinA ≠0,所以sin 2A= 41,而sinA>0,∴sinA=2 1. 因此A=30°,B=90°,C=60°。故选B 。 2.(2006吉林预赛)已知函数y=sinx+acosx 的图象关于x=5π/3对称,则函数y=asinx+cosx 的图象的一条对称轴是(C ) A .x=π/3 B .x=2π/3 C .x=11π/6 D .x=π 3.2006年南昌市)若三角形的三条高线长分别为12,15,20,则此三角形的形状为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不确定 4.(2006年南昌市)若sin tan a θθ=+,cos cot b θθ=+,则以下诸式中错误的是( B ) A .sin θ= 11+-b ab B .cos θ=1 1+-a ab C .tan cot θθ+=) 1)(1(21)1(2++-+++b a ab b a D .tan cot θθ-=)1)(1()2)((++++-b a b a b a 5.(2006安徽初赛)已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间, ∠DCE = 45°,则以AD 、DE 、EB 为边长构成的三角形的最大角是 ( ) A .锐角 B .钝角 C .直角 D .不能确定 6.(2006陕西赛区预赛)若3 3sin cos cos sin ,02θθθθθπ-≥-≤<,则角θ的取值范围是(C) A .[0, ]4 π B .[,]4 ππ C .5[, ]4 4ππ D .3[,)42 ππ 7.(2006年江苏)在△ABC 中,1tan 2A =,310 cos 10 B =.若△AB C 的最长边为1,则最短边的长为 ( D ) A .455 B .355 C .255 D .5 5 8.(2005年浙江)设2)(1=x f ,x x x f 2cos sin )(2+=,x x x f 2cos 2 sin )(3+=,24sin )(x x f =,上述函数中,周期函数的个数是( B ) A .1 B .2 C .3 D .4 【解】: 2)(1= x f 是以任何正实数为周期的周期函数;)(2x f 不是周期函数。 因为x sin 是以π21=T 为周期 的周期函数, x 2cos 是以222π =T 为周期的周期函数, 而1T 与2T 之比不是有理数,故)(2x f 不是周期函数。 )(3x f 不是周期函数。 因为2sin x 是以π221=T 为周期的周期函数, x 2cos 是以2 22π =T 为周期的周期函数,

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

空间解析几何数学竞赛辅导

空间解析几何数学竞赛辅导 一. 向量代数 1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量 ),,(12121221z z y y x x M M ---=→ 2、已知向量),,(321a a a a =→、),,(321b b b b =→ ,则 (1)向量→a 的模为232221||a a a a ++=→ (2)),,(332211b a b a b a b a ±±±=±→ → (3)),,(321a a a a λλλλ=→ 3、向量的内积→ →?b a (1)><→ →b a ,为向量→ → b a ,的夹角,且π>≤≤<→ →b a ,0 注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积→ → ?b a (遵循右手原则,且→ → → ⊥?a b a 、→ → → ⊥?b b a ) 3 2 1 3 21 b b b a a a k j i b a → → → → →=? (1)3 3 2211//b a b a b a b a b a ==? =?→ → → → λ (2)00332211=++?=??⊥→ →→ → b a b a b a b a b a (3)几何意义: ||a b ?代表以,a b 为邻边的平行四边形的面积S ;

平面上三点11(,,0)A x y ,22(,,0)B x y ,33(,,0)C x y 构成的三角形的面积为 212131 3111 |||0|22 ABC i j k S AB AC x x y y x x y y =?=---- 21 21 31 3112x x y y x x y y --=--的绝对值 也可以写成1 1223 31 1121 ABC x y S x y x y =的绝对值。 5. 混合积:(,,)()a b c a b c =??。 (1)注意:(,,)(,,)(,,)a b c b c a c a b == (2)坐标表示:1 11 2 223 3 3 (,,)()x y z a b c a b c x y z x y z =??=, 其中, ()111,,a x y z =,()222,,b x y z =, ()333,,c x y z =。 (3)几何意义:(,,)a b c 的绝对值表示以,,a b c 为三条邻边的平行六面体 的体积。 ,,a b c 共面的充要条件是(,,.)0a b c =。 空间不共面的四点111(,,)A x y z ,222(,,)B x y z ,333(,,)C x y z , 444(,,)D x y z 构成的四面体的体积为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学竞赛专题讲座数列

高中数学竞赛专题试题讲座——数列 一、选择题部分 1.(2006年江苏)已知数列{}n a 的通项公式2 2 45 n a n n =-+,则{}n a 的最大项是( B ) ()A 1a ()B 2a ()C 3a ()D 4a 2(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( ) A 、98 B 、99 C 、100 D 、101 3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A ) A. 2007 B. 2008 C. 2006 D. 1004 4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125 1 的最小整数n 是 ( ) A .5 B .6 C .7 D .8 解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为- 3 1 的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)= 3 11] )31 (1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1 >250,∴满足条件的最小整数n=7,故选C 。 5.(集训试题)给定数列{x n },x 1=1,且x n+1= n n x x -+313,则 ∑=2005 1 n n x = ( ) A .1 B .-1 C .2+3 D .-2+3 解:x n+1= n n x x 3 3 133 - +,令x n =tan αn ,∴x n+1=tan(αn +6 π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3, x 6=2-3, x 7=1,……,∴有 ∑===2005 1 11n n x x 。故选A 。 6、(2006陕西赛区预赛)已知数列{}{}n n a b 、 的前n 项和分别为n A ,n B 记

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学竞赛专题讲座---复数

复 数 专题一 复数与数列 复数数列的题目主要体现对复数运算的规律性的把握. 例1 设数列 ,,,,21n z z z 是首项为48,公比为)26(4 1 i +的等比复数列. (1)求4z . (2)将这个数列中的实数项,不改变原来的次序,从首项开始,排成 ,,,,21n a a a ,试求3a . (3)求无穷级数 ++++n a a a 21的和. 解:(1))6sin 6(cos 2 1)26(41ππi i r +=+= .i r z 2124834==. (2)使r 为实数的最小自然数是6,数列 ,,,,21n a a a 是首项为48,公比为6 r 的等比数列.所以 4 3 3= a . (3)这个级数是公比8 1 6 - ==r 的无穷等比级数,从而和3 128 ) 8 1(148= --=. 例2 今定义复数列 ,,,,21n a a a 如下,n n ka a a i a i a +=+=+=+1121,31,1()2≥n ,k 为正的常数.问复数n a 的辐角的正切与哪一个值最接近?(当∞→n 时) 分析:寻求n a 的一般式,再注意取极限的方法以及相关讨论. 解:1+n a 的辐角记作θ,212111)1(a k k k a ka a a n n n n --+++++=+= . (1)当1=k 时,i n n a a n a n )31()1(211+-+=+-=+,所以)(13 1tan ∞→→+-=n n n θ. (2)当1≠k 时,21111 1)1(a k k k a a n n n --++--=k k k k k n n n ---++ --=-13)13(1111 ∴)()10(1)1(1 3313)13(1tan 1∞→?? ? ??<<>+-→---+=-n k k k k k k k n n n θ. 例3 (1)设在复数列 ,,,,10n z z z 之间有如下关系:),3,2,1)((11 =-=--+n z z z z n n n n α,其中)1(≠αα是常复数.当1,010==z z 时,试将n z 的值用α表示. (2)若(1)中的i 31+=α,求在圆10||=z (z 是复数)的内部总共含有n z 的个数. 解:(1)αα=-=-)(0112z z z z ,2 1223)(αα=-=-z z z z (1) 211)(----=-=-n n n n n z z z z α α 于是,从1≠α得,α α--=11n n z .

高中数学竞赛与自主招生专题全套精品讲义:解析几何(教师版)

高中数学竞赛与自主招生专题全套精品讲义 第十五讲 解析几何一(教师版) 从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距. 所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。 在近年自主招生试题中,解析几何是高中数学内容的一个重要组成部分,也是高考与自主招生常见新颖题的板块,各种解题方法在解析几何这里得到了充分的展示,尤其是平面向量与解析几何的融合,提高了综合性,形成了题目多变、解法灵活的特色。 一、知识精讲 1.点到直线的距离 : d =(点00(,)P x y ,直线l :0Ax By C ++=). 2.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θ θ =+??=+?. (4)圆的直径式方程 1212()()()()0x x x x y y y y --+--= (圆的直径的端点是11(,)A x y 、22(,)B x y ). 3.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若 d = d r >?点P 在圆外;d r =?点P 在圆上;d r

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高一数学竞赛培训《解析几何部分》

高一上期数学竞赛培训资料(16) ——解析几何部分(4)——与圆有关的点的轨迹问题 一、知识要点——求点的轨迹方程的基本步骤: (1)建:建立直角坐标系; (2)设:设立动点坐标P (x ,y ); (3)现:将动点的等量关系呈现出来; (4)代:代入点的坐标; (5)化:化简上述等式。 应注意:所求方程的完备性! 二、题型示例: 1、ABC ?的两顶点A 、B 的坐标分别为(0,0)A 、(6,0)B ,顶点C 在曲线23y x =+上运动,求ABC ?重心的轨迹方程。 2、过原点作曲线2 1y x =+的割线12OPP ,求弦12PP 中点的 P 的轨迹方程。 3、已知两点(2,2)P -、(0,2)Q 以及一直线:l y x =,AB 在直线l 上移动,试求直线PA 和QB 的交点M

4、已知ABC ?的顶点A 是定点,边BC 在定直线上滑动,且||4BC =,BC 边上的高为3,求ABC ?的外心M 的轨迹方程。 5、设定点(6,0)P ,圆229x y +=上一点Q ,M 是PQ 上一点,满足 12 PM MQ =,当点Q 在圆上运动时,试求点M 的轨迹方程。 6、ABC ?中,边||6BC =,且0135B C ∠+∠=,试求顶点A 的轨迹方程。 7、过定点(,)M a b 任作两条互相垂直的直线1l 和2l ,分别与x 轴、y 轴交于A B 、两点,试求线段AB 的中点P 的轨迹方程。

8、已知圆222:O x y r +=,点M 为圆O 上任意一点,又点(,0)A r -、(,0)B r ,过B 作BP ∥OM 交AM 的延长线于点P ,试求点P 的轨迹方程。 9、过圆22:4O x y +=与y 轴的交点A 作圆的切线l ,M 为直线l 上任意一点,过M 作圆O 的另一条切线,切点为Q ,试求MAQ ?垂心的轨迹方程。 10、已知点P 是圆22 :4O x y +=上一动点,定点(4,0)Q 。 (1)试求线段PQ 中点的轨迹方程; (2)设POQ ∠的角平分线交PQ 于点R ,求点R 的轨迹方程。

高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何 一、选择题部分 1、(集训试题)过椭圆C :12 32 2=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足) ,延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为( ) A .]3 3 , 0( B .]2 3,33( C .)1,3 3 [ D .)1,2 3( 解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。又∵HQ=λPH ,所以 λ+-=11PQ HP ,所以由定比分点公式,可得:????? =-+= y y x x 11)1(3λ λ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33 [32132232 2∈-=-λλ λ。故选C 。 2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D) A .212y x =- B .212y x = C .216y x =- D .216y x = 3.(2006年江苏)已知抛物线2 2y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△ POF 是直角三角形,则这样的点P 共有 ( B ) ()A 0个 ()B 2个 ()C 4个 ()D 6个 4.(200 6天津)已知一条直线l 与双曲线122 22=-b y a x (0>>a b )的两支分别相交于P 、Q 两 点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于( A ) (A )22a b ab - (B )22a b ab - (C )ab a b 2 2- (D )ab a b 22- 5. (2005全国)方程 13 cos 2cos 3 sin 2sin 2 2 =-+ -y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线 解:),2 3cos()22cos(,22 322 0,32π ππ π π π->-∴< - <-< ∴>+ 即.3sin 2sin >又 ,03cos 2cos ,03cos ,02cos ,32 ,220>-∴<>∴<<< <ππ π方程表示的曲线是椭圆。 ) ()4 232sin(232sin 22)3cos 2(cos )3sin 2(sin *++-=--- π

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

相关文档
相关文档 最新文档