文档库 最新最全的文档下载
当前位置:文档库 › 浅谈列车的平稳操纵

浅谈列车的平稳操纵

浅谈列车的平稳操纵
浅谈列车的平稳操纵

浅谈列车的平稳操纵

摘要:通过分析造成列车冲动和断钩的原因,研究旅客列车和重载长大货物列车的平稳操纵,并总结了易造成冲动的制动机操作,防止断钩引起的列车分离,保证铁路运输秩序。

关键词:列车运行平稳操纵制动冲击力断钩

0 引言

列车平稳操纵和安全正点是机车乘务员的神圣职责,特快旅客列车和重载长大货物列车的开行,使列车所受的制动冲击力增大,断钩的可能性增加,机车乘务员的列车操纵难度加大。随着铁路布局调整和深化体制改革解放生产力,哈尔滨铁路局通过全面提高机车牵引定数,开行超长重载列车,减少列车开行对数,提高机车运用效率,有效地解决了单线区段的运输能力紧张问题。例如,鸡西、七台河-哈南间开行双机牵引6500吨超长重载列车、伊敏-海拉尔间开行单机牵引6000吨,收到了较好的成效。小编组快速旅客列车的开行,由于区间运行时间紧,提手柄较急,加速度较大,制动时减压量较大、冲动大,造成了旅客列车乘坐的舒适度降低。例如小编组快速旅客列车佳木斯-哈尔滨间运行4小时58分,牡丹江-哈尔滨间运行3小时58分,小编组特快旅客列车哈尔滨-齐齐哈尔间运行2小时18分。虽然开行小编组快速旅客列车和重载长大列车,机务系统在适应铁路跨越式发展、内涵扩大再生产、挖潜提效等方面作出了巨大的贡献,但小编组快速旅客列车和重载长大列车开行,使列车的冲动加剧,发生断钩和列车分离的可能性大增加却困扰着机务系统,研究列车冲动的形成原因和探讨列车平稳操纵经验具有重要的现实意义。

1 列车冲击力产生的原因

列车是由机车和若干车辆通过车钩及缓冲装置连接在一起组成的,由于车钩与车钩存在间隙,当列车起动、加速、制动、缓解以及遇有线路纵断面发生变化时,都会使机车与车辆或车辆与车辆间产生列车冲动。当列车施行制动时,由于列车管的压力从前向后逐步降低,受列车制动管压力波速的影响,前部车辆先产生制动、后部车辆后制动,前部车辆的减速大于后部车辆,列车从前至后逐渐产生压钩力,车钩缓冲装置压缩,在列车全部产生制动作用后,压钩力逐渐减小。当列车缓解时,由于列车管的压力从前向后逐步升高,受列车制动管压力波速的影响,前部车辆先产生缓解、后部车辆后缓解,前部车辆的减速小于后部车辆,列车从前至后逐渐产生伸张力,车钩缓冲装置伸张,在列车完全缓解后,伸张力逐渐减小。

2 车辆断钩的主要原因

在列车制动冲击力的作用下,车钩受力的大小和方向的变化使车钩缓冲装置产生压缩和拉伸变形,在制动力较小时,冲击力将直接由缓冲装置的形变来吸收。如果车钩的压缩力和伸张力进行一增大,由于缓冲装置的行程有限,当缓冲装置被完全压缩和伸张时,缓冲装置不再起缓冲作用,于是出现刚性冲击力。当这种冲击力超过车钩或缓冲装置的强度时,就会使钩舌断裂或缓冲装置损坏,这是车辆断钩产生的主要原因。

正是由于制动时车钩呈压缩状态,缓解时车钩呈伸张状态,所以断钩往往发生在制动后的缓解过程中;还有列车在起伏坡道上运行时,机车突然加载或加载过急,车钩突然由压缩状态向伸张状态转变过程中也容易发生断钩。

3 列车平稳操纵方法

列车平稳操纵就是减缓列车运动状态变化及减小加速度、降低列车冲击力的过程。

3.1 列车起动列车起动的操纵,过去传统的经验是提倡压缩车钩起动,因为这样可以使列车平均起动阻力较小,起动比较容易。压缩车钩起动,由于车辆间的间隙存在可以使各节车辆分别起动,而不是全列车一起动作,但也由于间隙的存在使列车冲击力加剧。但从减小冲动的角度来讲则恰恰相反,从有利于列车平稳起动的角度考虑,车钩应处于伸张状态。因为车钩在伸张状态,列车接近整体起动,冲动较小。

3.2 列车运行按照列车运行图行车,根据所担当的线路坡度、运行时刻及列车运行监控模式,及时调整主手柄位置或使用制动机调整列车运行速度,合理安排施工慢行地段的运行,掌握好两端停车站的运行时刻。

3.3列车制动各车辆的制动不是立即同时产生的,而是由前向后逐辆发生的。这种制动作用的逐辆传递及各车辆的制动力的发生时间及大小存在差异,造成车辆之间的明显速度差,从而产生纵向冲动。当途中调速减压地点、减压量掌握不当时冲动就会更大,所以掌握好减压量和减压时机尤为重要。

货物列车制动调速减压量尽量小一些,提倡“早减、少减”,使列车均匀降速。在牵引重载长大列车时,应以动力制动为主、空气制动为辅或动力制动与空气制动相结合的操纵方法。尤其是重载长大列车在长大下坡道上调速时,在列车全部进入下坡道后,将动力制动手柄提至1位,待列车继续增速的同时,逐步增加制动电流,当动力制动不能满足控制列车运行速度时,可同时使用空气制动调整列车运行速度。

3.4 列车缓解列车缓解时,头部车辆先于开始缓解,逐渐向后传播,通常缓解波速低,即传播较慢,当前部车辆已缓解,后部车辆仍在制动,列车呈拉伸状态,发生很大的车钩力。由于车钩的承拉能力远小于承压能力,因此,断钩事故多发生在缓解,特别是低速缓解,因为低速缓解时仍在制动中的车辆制动力大,前且车辆纵向作用力相差大,纵向冲动大。所以要禁止货物列车速度在15km/h以下时缓解列车制动,重载货物列车速度在30km/h以下缓解列车制动。在牵引货物列车制动后缓解前,可将小闸置于制动区适当的位置,再将大闸置于运转位或过充位,然后再将小闸阶段缓解,以减少列车前部先开始缓解而后部车辆仍在制动产生的车钩伸张作用。使用动力制动与空气制动相结合的操纵方法时,应先缓解空气制动,再逐步解除动力制动。

(完整版)修改提高乘务员平稳操纵列车能力

上海铁路局合肥机务段 阜阳运用车间阜麻第四QC小组 二○一五年十月. 小组名称QC QC阜麻第四小组注册号注册日期 2015年成立日期 1月 2013 年1月 小组类型攻关型提高乘务员平稳操纵列车能力课题名称 活动起止 12月2015年1月~2015年日期员小组成 组内职务组内分工性别年龄姓名序号文化程度职务车间主任大专1 51 吴庆辉男组长全面负责日常负责王崇彬49 男大专副主任副组长2 邵辉42 信息收集男副组长3 中专副主任 男组织实施 4 中专副主任组员47 任士喜 主任安全中专5 组员组织实施徐汪洋44 男员安全员中专王佳伟50 男组织实施6 组员 中专30 男工程师7 组员组织实施李铮安全技术 8 男中专34 组员于洪涛资料整理员 48人均小时教育情况小组成员接受QC 级别年份成果名称2005 段级牵引电动机的保养 获奖降低列车监控装置2012 段级责任放风率情况 2

件,坡道停车年段本车间发生破停92011超速运件,启动时操纵不当造成列车防溜动作2非,行造成监控器卸载、放风动作7件一般D21 责5件,扰乱了运输秩序。 理由: 提高平稳操纵水平,杜绝破停、运缓事件的发生。 平稳操纵不当,造成运缓、机车空转,严重影响运输秩序。 操纵不当,造成列车超速运行,有可能发生行车安全事故。

坡道停车后启动列车,操纵不当会导致列车溜逸,破坏 进路,引发事故。因此,提高乘务员的平稳操纵列车能力,是行车安全畅通的攻年,作为需要。选定“提高乘务员平稳操纵列车能力”2012QC 关课题。 3 人,主要担当合肥机务段阜阳运用车间现有机车乘务员896阜阳北~麻城、阜阳北~聊城长交路电力机车、阜阳北~芜湖东内燃机车、枢纽小运转货物列车、临客列车、专特运等运输任务,120万公里。月走行约、新人员以及新司机的由于担当区段多,新机型(电力机车)大量启用,机班对机车的操纵掌握不熟,尤其是大功率机车的操纵、新司机对机车操纵的正确方法等,另外因天气不良,极容易引起机车轮对空转,地码误差,造成监控装置动作。更为严重的坡道起动,若操纵不当,会造成列车向后溜逸,破坏后方进路,引起行车事故。 年车间平稳操纵不当分类统计表2011

完善铁路机车运用安全管理的方案探讨

完善铁路机车运用安全管理的方案探讨 铁路运输是我国居民长距离出行时主要的交通方式,铁路机车是铁路运输的主要设备,铁路机车运用安全管理效果对铁路交通运输质量及安全性具有直接的影响。因此,文章以铁路机车运用安全管理为入手点,分析了铁路机车运用安全管理现状。从旅客列车平稳操纵、乘务员休息管理、乘务员安全预防管理、铁路机车安全信息管理系统等方面,对铁路机车运用安全管理方案进行了深入探究。 标签:铁路;机车;安全管理 前言 在铁路机车运用安全管理过程中,如何提高铁路机车运用安全管理效率,是现阶段铁路机车管理工作的重要任务。因此,针对现阶段铁路机车运用管理中存在的平稳操纵管理目标不明、安全运用管理制度不完善、安全运用管理技术滞后等问题,对铁路机车运用安全管理工作方案进行深入分析具有非常重要的意义。 1 铁路机车运用安全管理现状 1.1 平稳操纵管理标准不明确 由于缺乏明确的铁路机车安全操纵标准,部分铁路机车乘务人员存在不规范操纵行为,增加了铁路机车运用风险。 1.2 安全运用管理制度不完善 虽然在铁路机车运用安全管理中具有对应的安全管理制度,但是随着新型铁路机车的不断涌现,以往安全管理条例滞后性也逐渐凸显。特别是乘务员管理过程中,由于缺乏详细的乘务员管理规范,导致乘务员工作任务超额,压力过大,严重影响了铁路机车运行安全[1]。 1.3 安全预防管理力度不足 虽然现阶段铁路机车运用安全管理人员已认识到了安全预防的重要性,但是由于安全预防机制实施时间较短,仍然存在较多漏洞。对铁路机车各关口安全管理工作造成了一定影响。 1.4 铁路机车运用安全管理技术滞后 在信息化时代,安全管理系统已在铁路机车运用安全管理中发挥了良好的效益。但是,由于以往管理理念的影响,多数铁路管理模块仍然沿用以往落后的管理技术,阻碍了铁路机车安全运用管理效率的提升。

旅客列车平稳操纵

旅客列车平稳操纵 前言 随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。 长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。 结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。 一、平稳操纵 平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和列车运动方程式的角度进行说明。 由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受

作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。 1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动 列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微机限功功能,但在实际现场工作中,牵引力与车钩间隙变化的要求还是不匹配,结合实际工作经验,说明在以下两种情况下启动列车的方法,事实说明,这两种方法可有效的减少或消除不同线路上列车启动时的冲动。 (1)上坡道起动:上坡道起动时,列车缓解,机车制动,此时,受坡道附加阻力(与运行方向相反)的作用,全列车的车钩均处于伸

列车运行控制系统毕业设计

列车运行控制系统 铁路通信信号系统是铁路运输的基础设施,是实现铁路统一指挥调度,保证列车运行安全、提高运输效率和质量的关键技术设备,也是铁路信息化技术的重要技术领域。 现代信息类技术的迅速发展。对铁路信号、通信产品和服务产生了重要影响。铁路通信和信号技术,以及现代铁路信息化系统之间的关系和作用变得密不可分。车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。 在列车运行控制技术方面,计算机、通信、控制技术与信号技术集成为一个自动化水平很高的列车运行自动控制系统(简称列控系统)。列控系统不仅在行车安全方面提供了根本保障,而且在行车自动化控制、运营效率的提高及管理自动化等方面,提供了完善的功能,并向着运输综合自动化的方向发展。列控系统技术是现代化铁路的重要标志之一。 随着列车速度的提高,列车的运行安全除了以进路保证外,还必须以专用的安全设备,监督、强迫列车(司机)执行。这些安全设备从初级的列车自动停车装置、自动告警装置、列车速度自动监督系统(或列车速度自动检查装置)发展到列车速度自动控制系统。 列车自动控制系统(A TC)—般指系统设备(包括地面设备和车载设备),同时也是一种闭塞方式,主要包括: 1.以调度集中系统CTC为核心,综合集成为调度指挥控制中心。 2.以车站计算机联锁系统为核心,综合集成为车站控制中心。 3.以列车速度防护与控制为核心,综合集成为列车(车载)运行控制系统。 4、以移动通信(例如GSM-R)平台,构建通信信号一体化的总成系统(例如CTCS)。 列车自动控制系统(A TC)的主要功能有四项: ·检查列车在线路上的位置(列车检测)。 ·形成速度信号(调整列车间隔)。 ·向列车发送速度信号或目标距离信号(信号传输)。 ·按速度或目标距离信号控制列车制动(制动控制)。 上述一至三项功能由地面没备完成,第四项功能由车载设备完成。 本章主要内容为200km/h动车组司机驾驶所需要的列控ATP技术和GSM-R系统中的无线列调功能。 第一节列控ATP系统技术原理 一.列控ATP系统的组成与功能 列控ATP是列车超速防护和机车信号系统的一体化系统,列控ATP系统主要由车载设备及地面设备两大部分组成,地面设备与车载设备一起才能完成列车运行控制的功能。 图7.1.1是列车运行控制系统地面设备原理框图。

机车高坡地段牵引旅客列车平稳操纵办法

机车高坡地段牵引旅客列车平稳操纵办法 引言:XXX线最大坡道18‰,使用HXD3C型大功率电力机车牵引。宜万线开通初期,旅客列车平稳操纵屡受部、局领导批评。2011年5月初,成立攻关小组,对大功率机车高坡地段平稳操纵进行攻关。经过反复验证,最终确定了大功率机车高坡地段平稳操纵办法。该办法在宜万线推广后,取得了较好效果,受到了路局领导好评。 旅客列车平稳操纵基本原则: 1.尽可能保持全列车钩处于一种状态(伸张或压缩)。 2.避免或减少牵引~制动间的频繁转换。 3.牵引力或制动力的上升与下降必须平滑。 4.列车在变坡点禁止进行空气制动和机车工况转换。 5.站内停车必须稳准停妥。 一、列车起动 1.列车起动方法 ⑴平道起车法 开车前先缓解列车空气制动,保持机车制动缸压力300KPa;将调速手柄置“*”位,牵引力保持14KN;机车制动缸压力缓解至200KPa,停顿2秒再缓慢缓解至零;列车平稳起动。 ⑵坡道(大于1.0‰)起车法 先将调速手柄置“*”位,保持牵引力为14KN;逐步缓解小闸,待机车与第一位车辆之间车钩伸张后再缓解大闸,使列车平稳起动。 2.全列起动后逐步提手柄至所需级位,使牵引力平滑上升,列车均匀加速。 3.通过侧向道岔时,机车保持一定的牵引力,使列车匀速通过道岔,注意不得超过道岔侧向限制速度。 4.全列车通过道岔后,逐步提手柄,保持牵引力逐步上升,迅速使列车达到运行图规定的速度,确保列车正点运行。 二、途中运行 1.途中调速 ⑴空电配合调速法 列车在长大下坡道调速时采用空电配合调速法。 保持机车电制动力,大闸实施初减。车体稳定后,根据速度要求,适量追加减压,列车速度下降至所需速度后,缓解大闸,保持电制动,使车钩始终保持

旅客列车平稳操纵

旅客列车平稳操纵 列车平稳操纵前言随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。 长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。 结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。 一、平稳操纵平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和

列车运动方程式的角度进行说明。由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。 1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微

电力机车过分相的平稳操纵方法

电力机车过分相的平稳操纵 分相绝缘器是解决接触网电分相用的,设在牵引变电所不同馈出线之间和分区亭等处,一般每20公里左右就有一台。分相绝缘器中性区即无电区的长度约为30米。它既承受接触网不同相位上的电压,又起机械连接作用,为防止电力机车受电弓通过中性区时拖带电弧烧损绝缘件和接触网导线,或造成其它供电事故,电力机车通过分相绝缘时,应将调速手柄回零位,断开主断路器,滑行通过分相绝缘后,才可重新合闸恢复正常操纵。由于电力机车通过分相绝缘时须断电滑行,自然要牵涉到牵引力或电阻制动力的解除与恢复,电阻制动与空气制动的转换等项操纵。有时还存在两台甚至三台机车的配合,线路纵断面的变化等特殊情况。如果司机操纵不当,很容易使列车产生剧烈冲动,甚至发生断钩分离事故。因此,分析电力机车通过分相绝缘时产生冲动的原因,研究平稳过分相的操纵方法,对提高司机操纵水平,防止或减少有害冲动,进而杜绝电力机车在分相绝缘附近发生的列车分离事故具有重要意义。 一、电力机车过分相冲动的原因 1、退级过快,甚至手柄直接回零位。此时机车牵引力顿失或衰减过快,必然打破列车原有平衡状态,后部车辆前冲,产生前阻后拥冲击。 2、退级地点不当。分相绝缘附近有时存在线路纵断面的变化,如由平道转上坡道或坡度变化较大,列车位能增幅过大时,在机车及前部车辆刚

进入上坡道时退级,解除牵引力。此时,由于列车后部大部分车辆处在平道或小坡道上,其惯性远大于前部机车车辆!必然会出现前阻 3、进级不当。当分相绝缘前后为连续大上坡道时,过分相后需立即进级抢速,列车由惰行状态转入牵引状态"车钩及缓冲装置由自然状态变为拉伸状态。如果进级过快过猛,会产生剧烈的拉伸冲击,严重时能拉断车钩。实际行车中曾多次出现这样的事故。 4、电阻制动时退级不当。一是退级过快,电阻制动力衰减过快造成机车前冲。二是空电联合制动时,随着列车速度的不断降低,集中在机车上的电阻制动力本来随之降低,此时不动手柄都会产生机车前冲振动,如再退手柄,甚至为过分相快速退级,必然会使冲动加剧。电阻制动进级不当的表现,处在连续大下坡道上的列车,过分相后需继续使用电阻制动时,速度手柄给得过快过猛,会产生前阻后拥冲击。 5、空电联合配合不当。下坡道过分相如果能使用电阻制动,过分相后能接着使用不致超速,当然好。但是,个别司机对线路纵断面和列车运行情况不清楚,不早点使用电阻制动,到分相跟前一看不行再使用空气制动,列车管没排完风又匆忙退手柄,操作慌乱无序。这样既违反了操作规程,使列车产生了剧烈的前冲振动,又影响了运行时分,如果处在变坡点上极易发生分离断钩事故。 一、上坡道过分相操纵: 1、分相前的退级操纵。上坡道过分相绝缘前应提前抢速,使列车尽可能保持较高速度。遇有停车信号时,在保证安全的前提下,尽可能过分相后停车。如分相前停车,要考虑强迫加速距离,防止将机车停在分相内。因

浅谈列车的平稳操纵

浅谈列车的平稳操纵 摘要:通过分析造成列车冲动和断钩的原因,研究旅客列车和重载长大货物列车的平稳操纵,并总结了易造成冲动的制动机操作,防止断钩引起的列车分离,保证铁路运输秩序。 关键词:列车运行平稳操纵制动冲击力断钩 0 引言 列车平稳操纵和安全正点是机车乘务员的神圣职责,特快旅客列车和重载长大货物列车的开行,使列车所受的制动冲击力增大,断钩的可能性增加,机车乘务员的列车操纵难度加大。随着铁路布局调整和深化体制改革解放生产力,哈尔滨铁路局通过全面提高机车牵引定数,开行超长重载列车,减少列车开行对数,提高机车运用效率,有效地解决了单线区段的运输能力紧张问题。例如,鸡西、七台河-哈南间开行双机牵引6500吨超长重载列车、伊敏-海拉尔间开行单机牵引6000吨,收到了较好的成效。小编组快速旅客列车的开行,由于区间运行时间紧,提手柄较急,加速度较大,制动时减压量较大、冲动大,造成了旅客列车乘坐的舒适度降低。例如小编组快速旅客列车佳木斯-哈尔滨间运行4小时58分,牡丹江-哈尔滨间运行3小时58分,小编组特快旅客列车哈尔滨-齐齐哈尔间运行2小时18分。虽然开行小编组快速旅客列车和重载长大列车,机务系统在适应铁路跨越式发展、内涵扩大再生产、挖潜提效等方面作出了巨大的贡献,但小编组快速旅客列车和重载长大列车开行,使列车的冲动加剧,发生断钩和列车分离的可能性大增加却困扰着机务系统,研究列车冲动的形成原因和探讨列车平稳操纵经验具有重要的现实意义。 1 列车冲击力产生的原因 列车是由机车和若干车辆通过车钩及缓冲装置连接在一起组成的,由于车钩与车钩存在间隙,当列车起动、加速、制动、缓解以及遇有线路纵断面发生变化时,都会使机车与车辆或车辆与车辆间产生列车冲动。当列车施行制动时,由于列车管的压力从前向后逐步降低,受列车制动管压力波速的影响,前部车辆先产生制动、后部车辆后制动,前部车辆的减速大于后部车辆,列车从前至后逐渐产生压钩力,车钩缓冲装置压缩,在列车全部产生制动作用后,压钩力逐渐减小。当列车缓解时,由于列车管的压力从前向后逐步升高,受列车制动管压力波速的影响,前部车辆先产生缓解、后部车辆后缓解,前部车辆的减速小于后部车辆,列车从前至后逐渐产生伸张力,车钩缓冲装置伸张,在列车完全缓解后,伸张力逐渐减小。 2 车辆断钩的主要原因 在列车制动冲击力的作用下,车钩受力的大小和方向的变化使车钩缓冲装置产生压缩和拉伸变形,在制动力较小时,冲击力将直接由缓冲装置的形变来吸收。如果车钩的压缩力和伸张力进行一增大,由于缓冲装置的行程有限,当缓冲装置被完全压缩和伸张时,缓冲装置不再起缓冲作用,于是出现刚性冲击力。当这种冲击力超过车钩或缓冲装置的强度时,就会使钩舌断裂或缓冲装置损坏,这是车辆断钩产生的主要原因。 正是由于制动时车钩呈压缩状态,缓解时车钩呈伸张状态,所以断钩往往发生在制动后的缓解过程中;还有列车在起伏坡道上运行时,机车突然加载或加载过急,车钩突然由压缩状态向伸张状态转变过程中也容易发生断钩。

地铁列车自动驾驶系统分析与设计

文章编号:100021506(2002)0320036204 地铁列车自动驾驶系统分析与设计 黄良骥,唐 涛 (北方交通大学电子信息工程学院,北京100044) 摘 要:对地铁列车自动驾驶系统进行分析,并对列车自动驾驶系统的车载设备进行设计. 关键词:列车自动控制系统;列车自动驾驶系统;自动控制 中图分类号:U284.48 文献标识码:B System Analysis and Design of Autom atic T rain Operation on Metro HUA N G L iang-ji ,TA N G Tao (College of Electronics and Information Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :In this paper ,the existing metro Automatic Train Operation (A TO )systems have been analyzed in China and the design of an onboard A TO system is proposed. K ey w ords :Automatic Train Control (A TC );Automatic Train Operation (A TO );Automatic Con 2 trol 对于城市轨道交通系统高效率高密度的要求来说,列车自动控制系统(A TC )是必不可少的.A TC 系统包括:列车超速防护子系统(A TP :Automatic Train Protection )、列车自动驾驶子系统(A TO :Automatic Train Operation )、列车自动监控子系统(A TS :Automatic Train Supervision ). A TS 子系统可以实现对列车运行的监督和控制,辅助行车调度人员对全线列车运行进行管理.A TP 子系统则根据地面传递的信息计算出列车运行的允许安全速度,保证列车间隔,实现超速防护.A TO 子系统根据A TS 提供的信息,在A TP 正常工作的基础上,实现最优驾驶,提高舒适度、降低能耗、减少磨损. 国外已研制了适用于高密度城市轨道交通的列车自动驾驶系统,并在城市轨道交通系统中广泛应用.我国在此项技术上研究较少,20世纪80年代以来,北京地铁、上海地铁、广州地铁均以巨额代价引进了国外的设备,近年来,为缓解市内交通紧张、减少空气污染发挥巨大作用.地铁的发展建设受到国家及各大中城市的普遍重视,许多城市的地铁正在设计建设,为降低地铁投资,迫切需要国内研究具有自主产权的适于城市轨道交通的列车自动驾驶设备. 1 ATO 系统分析 1.1 AT O 工作原理[1,2] A TO 子系统能保证运行时间与定点停车,还能提高运行效率,提高舒适度,减少能耗.但作为A TC 的一个子系统,它的功能是要依靠A TC 各子系统协调工作共同完成的,缺少A TP 与A TS 子系统,A TO 将无法正常工作. 从运行中所起作用来说,A TO 主要实现驾驶列车的功能,能进行车速的正常调整,给旅客传送信息,进行车门的开关作业,但这只是执行操作命令,不能确保安全,这就需要A TP 来进行防护.A TP 起监督功 收稿日期:2001209218作者简介:黄良骥(1978— ),男,广东普宁人,硕士生.em ail :hliangji @https://www.wendangku.net/doc/4214848188.html, 第26卷第3期2002年6月 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Vol.26No.3J un.2002

机务系统列车平稳操纵资料

列车牵引作为铁路对外经营的一个窗口,其服务质量的好坏将直接影响铁路的声誉和效益,搞好列车的平稳操纵具有重要的现实意义。 一是搞好列车操纵工作,是铁路适应市场经济的需要,关系到铁路运输在国际运输市场的地位和铁路运输的经济效益。 二是平稳操纵可以减少断钩事故的发生,防止因操纵不当而伤害到旅客的生命安全,使列车的通过能力得以提高。 三是平稳操纵工作是铁路机务系统在服务质量上的具体体现,它直接反映机务系统的管理水平、职工素质、机车质量等总体工作的整体水平。 一、旅客列车的平稳启动 列车启动平稳操纵包括手柄的使用和制动机的使用。 1.站内上坡道的车站起车 手柄要适当高一点,提手柄同时撒砂,但电动机电流最好不超过500A。道岔处保持电流平稳,机车越过道岔之后,迅速提手柄增加柴油机转数,提高电动机功率,加速。 2.站内平道出站方向上坡的车站起车 早停车,充分利用地形,预留启动加速距离,使列车在站内就达到一定速度有利于出站爬坡。 3.出站方向下坡道的车站起车 尽量靠前停,起车后可减少整列过岔出站时间,充分利用出站后的下坡达到技术速度,省油节电。 4.坡道起车是个难点 如果列车被迫停在坡度较大的上坡道,停车前要尽量选择停车位置,适当撒砂。停车前单阀单制不小于200kPa,使车钩压缩,再使自阀减压不小于100kPa。当有开车条件时,先提主手柄、电动机电流达到400A左右,先使自阀缓解,再缓解单阀同时迅速提主手柄提高牵引电动机电流,适当撒砂,电动机不超过最大瞬间电流即可。 二、旅客列车途中的平稳运行 1.机车车辆是通过车钩及缓冲装置机械连接成的组合体 缓冲装置为弹性元件,通过拉伸或压缩吸收列车的纵向冲击振动。当机车车辆间的拉伸或压缩变化较小时,被缓冲装置完全吸收,列车不会有明显冲动。当列车纵向冲击振动过大,机车车辆间的拉伸或压缩变化超过了缓冲装置的容量时,列车就会产生明显的冲动。因此,消除列车有害冲动,实现平稳操纵的要点在于,尽量减小车钩的伸缩变化,通过合理操纵使列车的车钩全部拉伸或全部压缩,当车钩由压缩状态过渡到拉伸状态,或由拉伸状态过渡到压缩状态时,要缓和平稳。当列车施行常用制动时,可以通过增大或减小机车制动力,使车钩压缩或伸张,抑制其伸缩变化,减小机车车辆的制动压力差及制动先后时差,实现平稳操纵。无论增大还是减小机车制动力,都应根据当时的运行速度、线路纵断面、列车编组、列车制动力等具体情况,该增则增,该减则减,而且增减要适时、按比例、循序渐进,不能突然增减,否则适得其反。列车行驶处于鱼背形、锅底形线路上施行制动或缓解时,受线路纵断面的影响,会使列车中的车钩伸张与压缩状态的转化加剧,当车辆与车辆之间的拉伸或压缩能量超过缓冲装置的容量时,就会导致冲动。列车行驶在曲线上施行制动与缓解,由于列车随曲线而弯曲,影响了制动波速和缓解波速,扩大了列车前后部车辆的制动与缓解时差,也使冲动增加。所以,施行制动或缓解尽量避免在鱼背形、锅底形及曲线上进行。 2.列车运行中产生冲动的原因及操纵办法 旅客列车在运行阶段发生冲动的原因有空转、功率变换频繁及其他原因。 (1)旅客列车在上坡道运行时,应提高列车运行速度,以较高的速度闯坡。爬坡时,多施行预防撒砂,防止空转发生,持续电流不得超过允许值,待全列车全部进入下坡道时再

浅析列车自动监控系统与列车自动防护系统接口设备故障

浅析列车自动监控系统与列车自动防护系统接口设备故障 摘要:近年来随着城市轨道交通的高速发展,基于无线通信的列车自动控制系 统在城市轨道交通中得到了普遍应用。而网关计算机作为列车自动监控子系统与 列车自动防护子系统的接口设备,对列车自动控制系统正常运行具有重要作用, 本文主要阐述了网关计算机的功能,并以典型网关计算机故障为例,详细分析了 故障原因、故障判定方法和处理措施。 关键词:网关计算机;表示信息;接口;ATS;ATP 1 网关计算机功能 网关计算机是列车自动监控子系统(ATS)与列车自动防护子系统(ATP)的 接口设备,主要用于ATS设备和ATP设备的数据通信,并进行隔离防护。网关计 算机内的APDS是ATS的接口模块,负责与ATS接口,而PDS是ATP的接口模块,负责与ATP接口。网关计算机设置在一级设备集中站,连接车站ATS分机和轨旁ATP设备。 车站ATS分机即车站ATS处理单元,是ATS系统重要处理设备,主要功能是:进行列车识别与追踪,下达列车调整命令,与联锁、ATO系统、ATP系统进行数 据传输,自动触发进路等功能。 轨旁ATP即地面ATP核心处理设备,其主要功能有:追踪列车运行,确定列 车位置;进行列车防护和进路防护,确定移动授权;与联锁形成接口,发送命令 到联锁,读入和监督联锁状态;控制站台屏蔽门等功能。 车站ATS分机一方面通过网关计算机接收来自轨旁ATP的站场表示、列车状态、列车位置报告、报警等信息,另一方面通过网关计算机发送信号设备控制命令、站台控制命令、临时限速命令、列车调整等信息给轨旁ATP系统执行。具体 接口方式如下图所示。 图1 ATS子系统与ATP子系统的接口方式 2 常见故障分析 当网关计算机A机和B机都故障时,将会导致该联锁区ATS与ATP 通道传输 信息中断,整个联锁区无表示信息也无法下达操作命令,且不再触发进路,导致 所有列车在移动授权终点停车。 而网关计算机具有双机热备功能,倘若一台网关计算机出现问题,如网关计 算机死机、网关计算机与ATS分机接口断开连接、网关计算机与轨旁ATP断开连 接等故障时,正常会切换至另外一台网关计算机,此时网关计算机仍然能正常工作。 然而还存在一种异常的情况,一台网关计算机出现通讯通道阻滞,而ATS与ATP接口程序又未完全断开,导致不能正常切换至另外一台网关计算机,此时也 将会造成该联锁区无表示信息也无法下达操作命令,且不能触发进路,导致所有 列车在移动授权终点停车。下面详细分析此类型故障。 3 典型故障分析 3.1故障现象 在ATS的终端界面上显示联锁区表示信息停滞,站场表示信息不再发生变化:即后续联锁区的所有站场表示信息均未更新,后续进入该联锁区的列车,在ATS 终端显示界面上列车的位置表示信息消失。且该联锁区不再触发进路,导致所有

列车运行控制系统

列车运行控制系统

列车运行控制系统 -03-25 14:52:17| 分类:铁路基础知识 | 标签: |字号大中小订阅 根据列车在铁路线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整的技术装备。系统包括地面与车载两部分,地面设备产生出列车控制所需要的全部基础数据,例如列车的运行速度、间隔时分等;车载设备经过媒体将地面传来的信号进行信息处理,形成列车速度控制数据及列车制动模式,用来监督或控制列车安全运行。系统改变了传统的信号控制方式,能够连续、实时地监督列车的运行速度,自动控制列车的制动系统,实现列车的超速防护。列车控制方式能够由人工驾驶,也可由设备实行自动控制,使列车根据其本身性能条件自动调整追踪间隔,提高线路的经过能力。 新一代铁路信号设备是由列车调度控制系统及列车运行控制系统两大部分组成的。从技术发展的趋势看是向着数字化、网络化、自动化与智能化的方向发展。它的作用是保证行车安全、提高运输效率、节省能源、改进员工劳动条件。 发展中的列车控制系统将成为一个集列车运行控制、行车调度指挥、信息管理和设备监测为一体的综合业务管理的自动化系统。

列车运行控制系统的内容是随着技术发展而提高的,从初级阶段的机车信号与自动停车装置,发展到列车速度监督系统与列车自动操纵系统。 进入20世纪90年代,世界上已有许多国家开发了各自的列车运行控制系统,其中,在技术上具有代表性且已投入使用的主要有:德国的LZB系统,法国的VM300和TVM430系统,日本新干线的ATC系统等。这些系统的共同特点是:能够实现自动连续监督列车运行速度,可靠地防止人为错误操作所造成的恶性事故的发生,保证列车的高速安全运行。它们之间的主要区别体现在控制方式、制动模式及信息传输等形式方面。 中国近几年来,对国外列车控制系统进行了较深入的研究,对列车控制模式、轨道电路信息传输、轨道电缆信息传输等方面都已取得不少的成果。在开发过程中,还可借鉴欧洲列车控制系统“功能叠加”、“滚动衔接”的经验,从保证基本安全着手,分步完成并真正达到安全、高效、舒适的目标。 中国列车运行控制系统(CTCS)介绍 CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS概述

旅客列车纵向冲动于操纵关系的研究

旅客列车纵向冲动于操纵关系的研究 发表时间:2019-03-29T15:58:58.367Z 来源:《电力设备》2018年第29期作者:张锐[导读] 摘要:列车在各种工况下,主要受作用于列车上与列车运行方向水平的三种力的作用,即:牵引力、运行阻力、制动力。(中国铁路北京局集团有限公司邯郸机务段河北邯郸 056003)摘要:列车在各种工况下,主要受作用于列车上与列车运行方向水平的三种力的作用,即:牵引力、运行阻力、制动力。从车辆动力学上讲,只要车辆与车辆间车钩间隙不发生变化,就不会造成车辆的冲动。但在实际的列车操纵中,由于车钩经常处于伸张或压缩状态,使列车产生冲动,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因。本人结合近两年操纵列车的实际经验,加上对牵引计算 详细深入的学习、分析,现对旅客列车的平稳操纵谈几点认识,主要说明操纵中减少冲动保证平稳。关键词:旅客列车;纵向冲动;操纵关系一、列车在车站起车时的平稳操纵方法在始发站及中途站停车再起,由于站场线路纵断面的不同,车辆车钩将出现拉伸或压缩的情况,因此在列车保压待发前,应先将机车小闸缓解(需侧压小闸手把进行缓解),牵引给流,使机车与机后第一位车辆车钩处于拉伸状态,而后再将小闸置于全制位。待发车后,司机先提手柄至“1位”,待牵引力上升并稳定后,司机缓慢下拉小闸(注意在小闸200-100千帕时稍作停留),直至机车小闸缓解完毕,待机车与机后第一位车钩拉直后,再缓解大闸,而后运行3-5米后,待全列车钩处于拉伸状态时,再根据限速情况提手柄加速。这样就可能尽量减少列车启动时的冲动。 二、列车加速时的平稳操纵方法由于和谐系列机车牵引力较大,列车在起动时极易出现牵引力波动的情况,从而使列车起动时出现前后耸动的情况,造成列车不平稳。因此在列车起动后的低速加速阶段,司机手柄给定级位应掌握在大于实际速度1位左右,如:列车速度为15km/h时,手柄级位维持在1.8-2.0之间,同时在列车速度不断升高的同时,逐步提高手柄级位,此时为防止机车牵引力波动造成列车前后耸动的情况,司机应持续撒砂。三、列车贯通实验时的平稳操纵方法由于进行列车贯通实验时,乘务员多采取带流制动的方法,但和谐机车牵引力较大,列车在进行贯通实验实施列车制动后,列车降速较为缓慢,而乘务员采取回手柄降低牵引力的情况,此时由于回手柄时机或方法掌握不好,极易出现列车冲动,因此应在进行贯通实验时应注意以下几方面:(一)因贯通试验时司机需操纵的环节较多,建议由二位司机(学习司机)进行车机联控。减压前,需保证手柄级位高于列车当时速度,但手柄级位不宜太高,大于速度0.5级即可,牵引电流保持在200A以下,并保证牵引力稳定。(二)司机实施列车制动后,及时缓解小闸,待列车制动排风完毕,车辆制动上闸后,将手柄级位稍回至缓解速度稍高的级位,高于缓解速度0.2级即可,待列车速度下降至缓解速度,机车牵引上升并稳定后,再缓解大闸。(三)举例说明:列车速度40km/h,手柄级位在4.1-4.5级之间,实施列车制动并车辆上闸后,将手柄回至3.5级,待速度下降至35km/h 以下且牵引力输出稳定后,再缓解列车制动。(四)根据线路纵断面的不同,如在线路坡度较大的上坡道,司机可不回手柄,待列车速度下降后,直接缓解大闸即可,避免发生机车牵引力消失后,机车后座的情况,从而造成列车不平稳四、机车过分相时的平稳操纵司机回手柄时,应将手柄回到稍低于列车速度,待牵引力消失后,再将手柄回至“1”位,稍停后再回至零位,不要直接回到“1”位,更不能直接回0位,避免列车冲动。在机车通过分相合闸且辅助变流器起动后,司机将手柄提至“1”位,观察原边电流上升后,再提手柄,这样可避免初次提手柄无牵引力输出,从而造成二次回手柄再提的情况。通过分相后,给定手柄级位: 1.如列车处于上坡道或平道时,为防止手柄给定级位高于列车速度造成机车前冲列车冲动的情况,因此手柄级位要与列车速度相等或稍低0.1级,例如:列车速度110km/h,则手柄给至10.9或11.0级,待列车速度自然下降、机车牵引力输出上升并稳定后,再将手柄给至固定级位。 2.如列车处于下坡道时,司机给定级位要高于列车速度0.1级,待牵引力输出后,及时提高手柄级位,避免牵引力出现波动。方法,防止牵引力波动或CI 瞬间封锁,列车前后耸动,造成不平稳的情况发生。 五、列车区间调速时的平稳操纵方法列车在区间调速时,应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。如牵引重点列车时,司机可采取在适当地点,切除机车电机,仅留一台或两台电机,降低机车牵引力,在实施列车制动,待排风完毕,车辆上闸后,根据列车降速趋势逐渐再回手柄,但机车手柄级位要始终保持高于列车速度,从而使机车车钩及车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。 六、列车在站停车时的平稳操纵方法列车进站后,司机应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车在站停车时的平稳。 七、缓解停车实践证明,如果缓解停车掌握得当,能非常有效的减少甚至消除因制动带来的冲动,但如果掌握不当,会造成比不缓解还要大的冲动,缓解停车的关键是掌握缓解的时机,而这个时机与列车的制动力,减压量,线路纵断面,缓解时的速度,车辆制动机的类型有关,没有理论数据说明上述因素与缓解时机的关系,在近两年的实践中,只能凭积累的工作经验来确定缓解时机,在将来的工作中还需要继续深入的探索和研究。结语

城市轨道交通列车自动控制系统简介

城市轨道交通列车自动控制系统简介 【摘要】列车自动控制系统是保证列车运行安全的重要设备,本文介绍了城市轨道交通列车自动控制系统(ATC)的组成和特点,对列车自动控制系统中的列车超速防护系统(ATP)、列车自动驾驶系统(ATO),列车自动监控系统(ATS)三个子系统进行简要的概述。 【关键词】城市轨道交通;列车控制系统;超速防系统;地铁 一、前言 随着城市现代化的发展,城市规模的不断扩大,城市轨道交通的发展已成为解决现代城市交通拥挤的有效手段,其最大特点是运营密度大、列车行车间隔时间短、安全正点。城市轨道交通列车自动控制系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 二、列车自动控制系统的组成 列车自动控制(ATC)系统由列车自动防护系统(ATP)、列车自动驾驶系统(ATO)和列车自动监控系统(ATS)三个子系统组成。 (一)列车自动防护(ATP-Automatic Train Protection)系统 列车自动控制系统中的ATP的子系统通过列车检测、列车间隔控制和联锁(联锁设备可以是独立的,有的生产厂商的系统也可以包含在ATP系统中)控制等实现对列车相撞、超速和其他危险行为的防护。 (二)列车自动驾驶系统(AT0–Automatic Train Operation) 列车自动驾驶子系统(ATO)与ATP系统相互配合,负责车站之间的列车自动运行和自动停车,实现列车的自动牵引、制动等功能。ATP轨旁设备负责列车间隔控制和报文生成;通过轨道电路或者无线通信向列车传输速度控制信息。ATP与ATO车载系统负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 (三)自动监控(ATS-Automatic Train Super -vision)系统 列车自动监控子系统负责监督列车、自动调整列车运行以保证时刻表的准确,提供调整服务的数据以尽可能减小列车未正点运行造成的不便。自动或由人工控制进路,进行行车调度指挥,并向行车调度员和外部系统提供信息。ATS 功能主要由位于OCC(控制中心)内的设备实现。

浅谈列车的平稳操纵

浅谈列车的平稳操纵 随着市场经济的快速发展,运输市场的竞争也更加激列,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,“安全、正点、平稳”正是提高运输服务质量所必须做到的,而作为机务部门是完成列车运输的主要部门,列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路部门的声誉,所以提高列车的操纵质量,就显得更加重要。 列车是由机车和若干车辆通过车钩及缓冲装置连接在一起组成的,当列车起动、加速、制动、缓解以及遇有线路纵断面发生变化时,都会使机车与车辆或车辆与车辆间产生列车冲动。想要列车平稳,就要避免冲动,我们平时操纵中冲动是怎么产生的: 1、速度低,减压量大,制动力过大,; 2、速度高,减压量小,造成追加减压量大,制动力大冲动大; 3、连续追加或间隔时间短; 4、在“鱼背形或锅底形”路段进行制动或缓解; 5、进级或退级过快。 经过长时间摸索,我总结出以下几点,请大家探讨: 一、进级 1、旅客列车起动时,将单阀置全制位,发车后先提手柄至“1位”,牵引力上升并稳定后,缓慢缓解单阀(注意在单阀200-100千帕时稍作停留),直至机车单阀缓解完毕,待机车与机后第一位车钩拉直后缓解自阀,列车管充风至550千帕以上时缓慢进级,列车运行3-5米,在2级位停留10-15秒,待列车车钩完全伸张后再加速,但给的牵引力不能太大,应随速度提升逐步加大牵引力。 2、由于列车车钩在拉伸状态是最平稳的,下坡道转上坡道时,提前控制好速度,在下坡道没有走完时开始进级,保证列车在进入上坡道时车钩呈拉伸状态。

二、退级 在需要退级时,应提前做好预想,尽量避免在线路坡道鱼背或锅底处退级,最好使列车全列或前大半处于同一坡道再缓慢退级。 三、空气制动 1、防关试闸:在试闸时应当尽量避开起伏坡道。 2、货物列车调速及停车:避免充风不足减压,早减压、小减压,在条件允许时使用空电结合。 3、客运列车调速及停车:避免充风不足减压,早减压、小减压,停车时可使单阀少量上闸,但不要超过80kpa。 4、牵引旅客列车时,在条件允许时可以带级使用空气制动,但牵引电机电流不要超过300A(最好在150-200A间),并要根据速度变化调整级位。 四、动力制动 货物列车在长大下坡道想要恒速运行时,必然需要使用动力制动,提前将牵引制动风机启动好,手柄置于制动1级位,使全列车车钩呈压缩状态,惰力运行到想要的速度后再缓缓加大制动力。 在运行中不管是牵引货物列车还是客运列车,都要根据线路及信号情况做好预想,想要车稳先要心稳,不能操之过急。 魏继成 2012年2月22日

列车自动控制系统(ATO)

轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统,由列车自动控制系统(Automatic Train Control,简称ATC)组成。 ATC系统共分三个子系统,分别是列车自动行车监控系统(ATS)、列车自动运行系统(ATO)、列车自动防护子系统(ATP),三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。 其中ATS系统由控制中心、车站、车场以及车载设备组成。ATS系统在ATP系统的支持下完成对列车运行的自动监控,实现以下基本功能。 1.通过ATS车站设备,能够采集轨道旁及车载ATP提供的轨道占用状态、进路状态、列车运行状态以及信号设备故障等控制和监督列车运行的基础信息。 2.根据联锁表、计划运行图及列车位置,自动生成输出进路控制命令,传送至车站联锁设备,设置列车进路、控制列车停站时分。 3.列车识别跟踪、传递和显示功能。系统能自动完成正线区段内列车识别号(服务号、目的地号、车体号)跟踪,列车识别号可由中央ATS自动生成或调度员人工设定、修改,也可由列车经车—地通信向ATS发送识别号等信息。 4.列车计划与实际运行图的比较和计算机辅助调度功能。能根据列车运行实际的偏离情况,自动生成调整计划供调度员参考或自动调整列车停站时分,控制发车时间。 5.ATS中央故障情况下的降级处理,由调度员人工介入设置进路,对列车运行进行调整,由ATS车站完成自动进路或根据列车识别号进行自动信号控制,由车站人工进行进路控制。 6.通过显示终端,能对轨道区段、道岔、信号机和在线运行列车等进行监视,能在行调工作站上给出设备故障报警及故障源提示。 在轨道交通调度指挥中心,整个大屏显示系统以ATS列车自动监控系统为主要人机界面,其全局信号显示方式经历了三个阶段。第一阶段,传统的马赛克表盘显示方式,操作困

相关文档