文档库 最新最全的文档下载
当前位置:文档库 › 机务系统列车平稳操纵资料

机务系统列车平稳操纵资料

机务系统列车平稳操纵资料
机务系统列车平稳操纵资料

列车牵引作为铁路对外经营的一个窗口,其服务质量的好坏将直接影响铁路的声誉和效益,搞好列车的平稳操纵具有重要的现实意义。

一是搞好列车操纵工作,是铁路适应市场经济的需要,关系到铁路运输在国际运输市场的地位和铁路运输的经济效益。

二是平稳操纵可以减少断钩事故的发生,防止因操纵不当而伤害到旅客的生命安全,使列车的通过能力得以提高。

三是平稳操纵工作是铁路机务系统在服务质量上的具体体现,它直接反映机务系统的管理水平、职工素质、机车质量等总体工作的整体水平。

一、旅客列车的平稳启动

列车启动平稳操纵包括手柄的使用和制动机的使用。

1.站内上坡道的车站起车

手柄要适当高一点,提手柄同时撒砂,但电动机电流最好不超过500A。道岔处保持电流平稳,机车越过道岔之后,迅速提手柄增加柴油机转数,提高电动机功率,加速。

2.站内平道出站方向上坡的车站起车

早停车,充分利用地形,预留启动加速距离,使列车在站内就达到一定速度有利于出站爬坡。

3.出站方向下坡道的车站起车

尽量靠前停,起车后可减少整列过岔出站时间,充分利用出站后的下坡达到技术速度,省油节电。

4.坡道起车是个难点

如果列车被迫停在坡度较大的上坡道,停车前要尽量选择停车位置,适当撒砂。停车前单阀单制不小于200kPa,使车钩压缩,再使自阀减压不小于100kPa。当有开车条件时,先提主手柄、电动机电流达到400A左右,先使自阀缓解,再缓解单阀同时迅速提主手柄提高牵引电动机电流,适当撒砂,电动机不超过最大瞬间电流即可。

二、旅客列车途中的平稳运行

1.机车车辆是通过车钩及缓冲装置机械连接成的组合体

缓冲装置为弹性元件,通过拉伸或压缩吸收列车的纵向冲击振动。当机车车辆间的拉伸或压缩变化较小时,被缓冲装置完全吸收,列车不会有明显冲动。当列车纵向冲击振动过大,机车车辆间的拉伸或压缩变化超过了缓冲装置的容量时,列车就会产生明显的冲动。因此,消除列车有害冲动,实现平稳操纵的要点在于,尽量减小车钩的伸缩变化,通过合理操纵使列车的车钩全部拉伸或全部压缩,当车钩由压缩状态过渡到拉伸状态,或由拉伸状态过渡到压缩状态时,要缓和平稳。当列车施行常用制动时,可以通过增大或减小机车制动力,使车钩压缩或伸张,抑制其伸缩变化,减小机车车辆的制动压力差及制动先后时差,实现平稳操纵。无论增大还是减小机车制动力,都应根据当时的运行速度、线路纵断面、列车编组、列车制动力等具体情况,该增则增,该减则减,而且增减要适时、按比例、循序渐进,不能突然增减,否则适得其反。列车行驶处于鱼背形、锅底形线路上施行制动或缓解时,受线路纵断面的影响,会使列车中的车钩伸张与压缩状态的转化加剧,当车辆与车辆之间的拉伸或压缩能量超过缓冲装置的容量时,就会导致冲动。列车行驶在曲线上施行制动与缓解,由于列车随曲线而弯曲,影响了制动波速和缓解波速,扩大了列车前后部车辆的制动与缓解时差,也使冲动增加。所以,施行制动或缓解尽量避免在鱼背形、锅底形及曲线上进行。

2.列车运行中产生冲动的原因及操纵办法

旅客列车在运行阶段发生冲动的原因有空转、功率变换频繁及其他原因。

(1)旅客列车在上坡道运行时,应提高列车运行速度,以较高的速度闯坡。爬坡时,多施行预防撒砂,防止空转发生,持续电流不得超过允许值,待全列车全部进入下坡道时再

回手柄。

(2)旅客列车在平道上运行时,因将列车速度提高至所需速度时,要适当调整机车牵引力,主手柄提高或降低操作不要过快,以避免列车发生冲动。

(3)旅客列车在起伏坡道上运行时,可利用机车的牵引力调整列车运行速度,使车钩呈现伸张状态通过变

坡处。

在旅客列车运行中,发现列车压力表表针急剧下降、摆动,应迅速停止向列车管道冲风,解除机车牵引力,及时采取停车措施。停车后查明原因并妥善处理,确认列车管道通风状态良好后,方可重新启动机车。

防止空转,稳态启动。在平道与小坡道启动时,因为列车平均启动阻力小,启动比较容易,拉钩启动(特别是慢启动)时,列车接近稳态运行,车钩受力不会超过机车的启动牵引力,待列车缓解后就可以徐徐加力启动。

三、旅客列车进站停车

1.旅客列车进站停车一段制动法

一段制动法是指一次制动(包括1~2次的追加减压)使列车平稳,准确稳妥停车的操作方法。采用一段制动法进站停车时要做到以下几个方面。

(1)根据列车速度、制动力及线路纵断面等具体情况来确定制动时机。初次减压量掌握在50~80kPa范围内,不可过大;在自阀手柄移至制动区某一减压位置的同时(上坡道自阀制动前),将单阀手柄推至缓解位约1s左右(根据减压量大小及工作风缸降压速度掌握),利用适当降低工作风缸压力的方法延迟机车制动缸升压,以消除机车制动快而引起的列车纵向压缩冲动,但机车制动缸压力不得低于50kPa。

(2)准确掌握追加减压时机和追加减压量,根据列车降速情况和停车目标距离适时适量地追加减压,是实现稳准对标停车的重要环节。第一次追加减压应在初次减压排气结束6s后进行,第二次追加减压,时隔时间也应在3s以上。追加减压次数一般不宜超过2次,每次追加减压量以20kPa左右为宜,但最后一次追加减压最好掌握在20kPa以内。追加减压后,应将单阀手柄再次瞬间推向缓解位(约半秒),使追加减压后的机车制动缸压力在原有压力的基础上增加20~30kPa。

(3)制动保压停车时,须注意机车制动力与列车制动力的合理匹配(按列车制动力强弱掌握),减小和避免列车冲动。增加机车制动力时,机车制动缸压力波动应在30kPa以内,并不得连续进行,机车制动缸压力不得低于50kPa。

2.旅客列车进站停车两段制动法

旅客列车进入车站侧线或限速线路停车时,当进站速度将超过道岔限速时,为确保行车安全,应在进站前施行一次调速制动,待速度降至规定要求时,于道岔前方施行缓解,进站后再施行制动停车,即两段制动法。采用两段制动法进站停车要做到以下几个步骤。

(1)第一段调速制动应根据列车速度、列车制动力找准时机,初次减压量掌握在50~80kPa范围内,追加减压不超过一次,累计减压量应控制在100kPa以内,防止减压量过大,或因列车编组辆数过多,而造成第二段制动前副风缸不能充足气,而引起列车冲动、超标及列车速度过低造成晚点。

(2)第二段制动时,必须待全列车充足气后再进行(列车管道与副风缸达到规定压力)。如果第一段制动时间较长,应考虑闸瓦已热,制动力降低的因素,在留有适当追加减压量的前提下,要适当提前减压,仍将减压量控制在50~80kPa范围内,然后根据列车降速情况及停车标距离,适当地追加减压。第一次追加减压时,追加减压量可按(20±10)kPa掌握;第二次追加减压时,减压量则不应超过20kPa,每次追加减压时均须有适当时间间隔,并及时用单阀消减机车制动力,以避免引起冲动。

综上所述,机车操纵是机车乘务员的一项综合技能,也是机车乘务员一次出乘作业过程标准化程序的主要内容。因此,作为一名合格的乘务员,要有过硬的操纵本领,才能使列车在线路上安全、顺利地运行

电力机车平稳操纵

一、HXD3机车平稳操纵方法

1.列车在站起车时的平稳操纵方法

(1)始发站及中途站试风后的起车方法

因列车在始发站及中途站试风后,由于站场线路纵断面的不同,车辆车钩将出现拉伸或压缩的情况,因此在试风完毕列车保压待发前,应先将机车小闸缓解(需侧压小闸手把进行缓解)使机车与机后第一位车辆车钩处于拉伸状态,而后再将小闸置于全制位。待发车后,司机先提手柄至“1位”,待牵引力上升并稳定后,司机缓慢下拉小闸(注意在小闸200~100千帕时稍作停留),直至机车小闸缓解完毕,待机车与机后第一位车钩拉直后,再缓解大闸,而后运行3~5米后,待全列车钩处于拉伸状态时,再根据限速情况提手柄加速。

(2)中间站停车后再开车时的起车方法

中间站停车后也可采取上述第一项起车方法起动列车,但由于上述第一项操纵方法较为复杂,易造成列车起车晚点,因此建议采取以下方法起车。中间站停车后,司机在检查走行部完毕列车发前,将小闸置于全制位,待列车发车后,司机先提手柄至“1位”,待牵引力上升并稳定后,缓解大闸,待列车管充风至550千帕以上时,司机缓慢下拉小闸(注意在小闸200-100千帕时稍作停留),则列车可实现平稳起动。

2.列车加速时的平稳操纵方法

由于HXD机车牵引力较大,列车在起动时极易出现牵引力波动的情况,从而使列车起动时出现前后耸动的情况,造成列车不平稳。因此在列车起动后的低速加速阶段,司机手柄给定级位应掌握在大于实际速度1位左右,如:列车速度为8km/h时,手柄级位维持在1.8~2.0之间,同时在列车速度不断升高的同时,逐提高手柄级位,此时为防止机车力波动造成列车前后耸动的情况,司机应持续撒砂。

3.列车贯通实验时的平稳操纵方法

由于进行列车贯通实验时,乘务员多采取带流制动的方法,但和谐机车牵引力较大,列车在进行贯通实验实施列车制动后,列车降速较为缓慢,而乘务员采取回手柄降低牵引力的情况,此时由于回手柄时机或方法掌握不好,极易出现列车冲动,因此应在进行贯通实验时应注意以下几方面:

首先,因贯通试验时司机需操纵的环节较多,建议由二位司机(学习司机)进行车机联控。

其次,司机进行贯通试验,在大闸减压前,需保证手柄级位高于列车当时速度,但手柄级位不宜太高,大于速度0.5级即可,并保证牵引力稳定。

第三,司机实施列车制动后,及时缓解小闸,待列车制动排风完毕,车辆制动上闸后,将手柄级位稍回至缓解速度稍高的级位,高于缓解速度0.2级即可,待列车速度下降至缓解速度,机车牵引上升并稳定后,再缓解大闸。

举例说明:列车速度40km/h,手柄级位在4.1-4.5级之间,实施列车制动并车辆上闸后,将手柄回至3.5级,待速度下降至35km/h以下且牵引力输出稳定后,再缓解列车制动。

第四,根据线路纵断面的不同,如在线路坡度较大的上坡道,司机可不回手柄,待列车速度下降后,直接缓解大闸即可,避免发生机车牵引力消失后,机车后座的情况,从而造成列车不平稳。

4.机车过分相时的平稳操纵方法

由于目前HXD3与HXD3C机车在回手柄时,牵引力下降的速度并不相同,因此在过分相时操纵应注意:

(1)HXD3型机车

司机回手柄时,应将手柄回到稍低于列车速度,待牵引力消失后,再将手柄回至“1”位,稍停后再回至零位,不要直接回到“1”位,更不能直接回0位,避免列车冲动。在机车通过分相合闸且辅助变流器起动后,司机将手柄提示“1”位,观察原边电流上升后,再提手柄,这样可避免初次提手柄无牵引力输出,从而造成二次回手柄再提的情况。

(2)HXD3C型机车

由于HXD3C型机车牵引力的下降较为平缓,司机在过分相前回手柄时,可直接将手柄回至“1”位,待牵引力消失后,再回至“0”位断电,如列车处于上坡道时,也可采取上述第一项HXD3型机车回手柄的方法,避免列车发生冲动。(3)通过分相后,无论HXD3、HXD3C型机车根据列车当时速度,给定手柄级位:

①如列车处于上坡道或平道时,为防止手柄给定级位高于列车速度造成机车前冲列车冲动的情况,因此手柄级位要与列车速度相等或稍低0.1级,例如:列车速度110km/h,则手柄给至10.9或11.0级,待列车速度自然下降、机车牵引力输出上升并稳定后,再将手柄给至固定级位。

再将手柄回至“1”位,稍停后再回至零位,不要直接回到“1”位,更不能直接回0位,避免列车冲动。在机车通过分相合闸且辅助变流器起动后,司机将手柄提示“1”位,观察原边电流上升后,再提手柄,这样可避免初次提手柄无牵引力输出,从而造成二次回手柄再提的情况。

②如列车处于下坡道时,司机给定级位要高于列车速度0.1级,待牵引力输出后,及时提高手柄级位,避免牵引力出现波动。

③加速时,注意采取持续撒砂的方法,防止牵引力波动或CI瞬间封锁,列车前后耸动,造成不平稳的情况发生。

5.列车区间调速时的平稳操纵方法

列车在区间调速时,应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。

如牵引重点列车时,司机可采取在适当地点,切除机车电机,仅留一台或两台电机,降低机车牵引力,在实施列车制动,待排风完毕,车辆上闸后,根据列车降速趋势逐渐再回手柄,但机车手柄级位要始终保持高于列车速度,从而使机车车钩及车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。

6.列车在站停车时的平稳操纵方法

列车进站后,司机应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车在站停车时的平稳。

如车辆制动力较强,且机车实际停车位置与停车标位置较近时,若采取两段制动的方法,则列车势必出现充风不足,制动时造成冲动的情况。此时,可发挥和谐型电力机车牵引力较大的特点,在列车降速过程中,将手柄给至低于列车速度的级位,待列车速度下降且牵引力上升后,根据停车位置的距离逐步回手柄,从而使列车既能对标停车,又做到避免两段制动充风不足造成列车冲动的情况。但此种方法在停车过程中不易长时间采用。

如牵引重点列车时,司机可采取在适当地点,切除机车电机,仅留一台或两台电机,降低机车牵引力,在站停车,实施列车制动后,待排风完毕,车辆上闸,根据列车降速趋势逐渐再回手柄,但机车手柄级位要始终保持高于列车速度,从而使机车车钩及车辆车钩始终保持在拉伸状态,从而实现列车在站停车期间的平稳。待列车停稳后,将机车小闸置于全制位,再回手柄解除牵引力,避免机车后座发生冲动。

二、HXD3型电力机车途中常见故障应急处理方法

1.受电弓故障

现象:升不起弓或自动降弓

处理方法:

(1)检查升弓气路风压是否高于600Kpa。如低于此值应按压一下辅压机按钮SB95(在控制电器柜上),使用辅助压缩机泵风,当风压达到735Kpa时,辅助压缩机自动停打。

(2)检查控制电器柜上的各种电器开关位臵,应臵于正常位臵。如有跳开现象,请检查确认后,重新闭合开关。

(3)换弓升弓试验。

若机车运行中自动降弓,停车确认受电弓损坏程度,记录刮弓的地点。通过低压电器柜上的开关SA96,控制隔离开关QS1或QS2隔离损坏的受电弓。可以换弓继续运行。若刮弓导致受电弓破损严重,需要登车顶作业,请求停电,参照执行机安函[2006]135号文件内容,做好必要的安全防护。

(4)若故障在乘务员接乘时出现,检查管路柜内蓝色钥匙,应处于竖直位,即开放状态。

(5)故障在接乘时出现,可以使用正常的受电弓运行,也可以按照下面的步骤查找故障受电弓的问题。首先,检查升弓塞门U98,应臵于打开位臵(顺位开通)。其次主断控制器,将其上面的开关臵于“停用”位臵,如能升起弓,说明主断控制器故障。

2.主断合不上

处理方法:

(1)检查气压正常,不低于于650Kpa。(保证风压继电器KP58闭合)(2)检查司控器主手柄处于“0”位。

(3)检查两端司机室操纵台上的紧急制动按钮,应该在弹起位。

(4)半自动过分相按钮在正常弹起位。

(5)过分相后合不上主断,关闭全自动过分相装臵。

(6)若故障在接乘时发生,检查各相应的塞门开关。检查主断气路塞门U94臵开启位(顺位开通)。检查CI试验开关SA75臵“正常”位。

3.提牵引主手柄,无牵引力

处理方法:

(1)确认各风机启动完毕(换向后,风机启动)。

(2)确认停车制动在缓解位,制动缸压力小于150kpa时操纵台停车制动红色指示灯应熄灭。

(3)确认制动系统CCB-II显示幕不显示动力切除状态。

(4)监控未发出卸载信号。

(5)通过TCMS显示屏查看机车部件的状态,发现异常,到低压电器柜检查对应的自动开关是否处于闭合位。

4.主变流器故障

现象:跳主断,故障显示灯亮,微机显示主接地、牵引电机过流、主变压器牵引绕组过流、中间回路过电压、网压异常等。

处理方法:

(1)将司控器手柄回“0”位,按操纵台“复位”按钮,再合主断提手柄试验。此时注意TCMS提示的内容,包括故障信息和电机牵引力情况。

(2)如合不上主断,或提手柄后就跳主断,应根据提示隔离相应的主变流器,然后再合主断试验牵引。隔离操作需要在微机屏上手触进行。隔离切除后,机车损失部分动力。

注:当故障严重时,在司机室有可能听到机械间里有很大的“放炮”声音,并可能有冒烟现象,司机室微机屏显示相应的主变流器故障。

5.辅助变流器故障

现象:跳主断,故障显示灯亮,微机显示辅助变流器输入过流、辅助回路过载、中间回路过电压、辅助回路接地等故障信息。

处理方法:

(1)辅助变流器有二组,当一组出现故障,微机会自动转换。此时通过微机显示屏查看信息,KM20应闭合。

(2)若微机转换异常,可以手触显示屏“开放”故障的一组辅助变流器,让TCMS切除转换;也可以断合低压电器柜上的辅助变流器自动开关QA47进行复位转换。

(3)若还不能正常转换,需要停车降弓,断开蓄电池总电源30秒以上进行复位。注:当切除一组辅助变流器后,牵引风机将全速运转,只有一台空压机投入工作。

6.油泵故障

现象:机车降功率1/2,微机显示信息,故障显示灯亮。

处理方法:

(1)当二个油泵有一个故障时,先断合几次故障油泵的空气自动开关(QA21、22),如能恢复继续运行。

(2)如仍有故障,TCMS检测到信号后会自动将相应的三组主变流器隔离,即切除一个转向架的动力。在可能的情况下,维持运行至前方站,再做处理。7. 主变油温高故障

现象:跳主断,继电器KP52动作,微机显示信息。

处理方法:

(1)在停车状态下,用手触摸油箱检查油温,观察机车右侧油温表是否异常,不能高于90℃。若油温高,油温高继电器动作,不允许机车运行,否则影响变压器绝缘、氮气保有量等,需请求救援。

(2)断合总电源复位,若故障消除继续运行。无效,请求救援。

8.牵引风机故障

现象:机车降功1/6,故障显示灯亮,微机显示风机故障或风速故障。

处理方法:

(1)当一组风机故障时,可断合几次相应的空气自动开关(低压电器柜上)。

(2)若故障无法恢复,TCMS会自动将相对应的一组CI切除,也可在微机屏手触切除,即主变流器六组中有一组不工作,机车保持5/6的牵引力,可维持运行。

9.冷却塔风机故障处理

现象:故障显示灯亮,微机显示冷却塔风机或风速故障。

处理方法:

(1)当一组冷却塔风机故障时,可断合几次相应的空气自动开关(QA17、18)。

(2)如确实故障,只在TCMS显示器上报故障,机车仍能继续牵引。注意:虽然能正常工作,但变压器油温会逐渐升高,最终会因为油温高而停止动力输出。司机可根据牵引吨位、行走路程,判断是否前方站停车,也可以征求技术人员意见作出判断。

9.空转故障

现象:空转故障显示灯亮,微机显示电机空转。

处理方法:

(1)按压“复位”按钮,适当降低牵引级位,人工撒砂。

(2)若某个电机持续空转,通过微机屏切除相应的主变流器,机车损失1/6动力。

10.110V充电电源(PSU)故障

现象:微机显示PSU故障。

处理方法:

(1)PSU有二组,当有一组出现故障,微机会自动转换。

(2)若微机没有转换,尽量在前方站停车,输入检修密码“000”,修改日期,例如今天是6月1日,改成6月2日或5月30日等,以此类推,即改变日期的奇偶数,断合总电源复位,微机重启将PSU转换到另外一组工作。

11.控制回路接地

现象:操纵台控制回路接地故障显示灯亮,控制回路接地开关QA59跳开。

处理方法:

(1)检查低压电器柜上的各开关,是否有跳开(除QA59)。

(2)若有跳开,查看其对应的功能,尝试重新闭合。

12.原边过流故障

现象:主断跳开,故障显示灯亮,微机显示信息。

处理方法:

(1)手柄回零,按“复位”按钮,重新闭合主断试验牵引。

(2)若无效,请求救援。

13.各种电气故障不能复位、不能解决的处理

本机车是微机控制机车,多数故障微机系统能自动进行转换处理,并提示相关的信息。若微机系统没有处理或转换异常,而现存故障又严重影响机车牵引时。需要停车降弓,断开蓄电池电源30秒钟以上(QA61),让微机系统重启复位。

特别注意:机车在断开蓄电池总电源后,列车管压力将以常用最大减压量减到0。

14.制动机系统故障产生的惩罚制动

现象:机车实施常用或紧急制动,制动显示屏显示惩罚制动、显示器识别错误等信息。

处理方法:

(1)通过变换制动机手柄位臵,尝试恢复。

(2)停车降弓,断开蓄电池总电源30秒钟以上,再重新闭合。

(3)这种故障一般只在一个操纵端出现。乘务员换成后端操纵,二人配合,一人控制机车,一人在前端了望,将列车维持进前方站后,请求救援。

参考文献:

[1] 那利和.电力机车制动机.中国铁道出版社.2001

[2] 中华人民共和国铁道部.铁路技术管理规程.北京中国铁道出版社.2006

[3] 中华人民共和国铁道部.机车操作规程.北京中国铁道出版社.2000

[4] 张志刚.LKJ2000型列车运行监控记录装置[M].中国铁道出版社.2003

(完整版)修改提高乘务员平稳操纵列车能力

上海铁路局合肥机务段 阜阳运用车间阜麻第四QC小组 二○一五年十月. 小组名称QC QC阜麻第四小组注册号注册日期 2015年成立日期 1月 2013 年1月 小组类型攻关型提高乘务员平稳操纵列车能力课题名称 活动起止 12月2015年1月~2015年日期员小组成 组内职务组内分工性别年龄姓名序号文化程度职务车间主任大专1 51 吴庆辉男组长全面负责日常负责王崇彬49 男大专副主任副组长2 邵辉42 信息收集男副组长3 中专副主任 男组织实施 4 中专副主任组员47 任士喜 主任安全中专5 组员组织实施徐汪洋44 男员安全员中专王佳伟50 男组织实施6 组员 中专30 男工程师7 组员组织实施李铮安全技术 8 男中专34 组员于洪涛资料整理员 48人均小时教育情况小组成员接受QC 级别年份成果名称2005 段级牵引电动机的保养 获奖降低列车监控装置2012 段级责任放风率情况 2

件,坡道停车年段本车间发生破停92011超速运件,启动时操纵不当造成列车防溜动作2非,行造成监控器卸载、放风动作7件一般D21 责5件,扰乱了运输秩序。 理由: 提高平稳操纵水平,杜绝破停、运缓事件的发生。 平稳操纵不当,造成运缓、机车空转,严重影响运输秩序。 操纵不当,造成列车超速运行,有可能发生行车安全事故。

坡道停车后启动列车,操纵不当会导致列车溜逸,破坏 进路,引发事故。因此,提高乘务员的平稳操纵列车能力,是行车安全畅通的攻年,作为需要。选定“提高乘务员平稳操纵列车能力”2012QC 关课题。 3 人,主要担当合肥机务段阜阳运用车间现有机车乘务员896阜阳北~麻城、阜阳北~聊城长交路电力机车、阜阳北~芜湖东内燃机车、枢纽小运转货物列车、临客列车、专特运等运输任务,120万公里。月走行约、新人员以及新司机的由于担当区段多,新机型(电力机车)大量启用,机班对机车的操纵掌握不熟,尤其是大功率机车的操纵、新司机对机车操纵的正确方法等,另外因天气不良,极容易引起机车轮对空转,地码误差,造成监控装置动作。更为严重的坡道起动,若操纵不当,会造成列车向后溜逸,破坏后方进路,引起行车事故。 年车间平稳操纵不当分类统计表2011

列车运行控制系统期末试题及参考答案

北京交通大学考试参考答案(A卷) 课程名称:列车运行控制系统学年学期:2013—2014学年第1学期 课程编号:50L274Q开课学院:交通运输出题教师:课程组 一、名词解释(共3小题,每题3分,共9分) 1.虚拟闭塞:是固定闭塞的一种特殊形式,以虚拟方式(设置通信模块和定位信标)将区间划分为若干个虚拟闭塞分区,并设置虚拟信号机进行防护。 2.准移动闭塞:基于固定闭塞的目标—距离控制方式,保留固定闭塞分区,以前方列车占用闭塞分区入口确定目标点,通过地车信息传输系统向列车传送目标速度、目标距离等信息。这种闭塞方式称为准移动闭塞。 3.最限制速度:综合考虑列车在区域各类限制速度得出的最低值(即最不利限制部分或最严格限制速度),简称最限制速度。 二、填空题(共12题,每空1分,共25分) 1.列车运行控制系统根据前方行车条件为每列车产生行车许可,并通过地面信号和车载信号的方式向司机提供安全运行的凭证。车载设备实施速度监控,当列车速度超过允许速度时控制列车实施制动,防止列车超速颠覆或与前方追尾,保证行车安全。 2.铁路信号安全的广义概念是指铁路信号设备或系统具有维护铁路列车(车列)安全运行的能力。狭义概念是指设备(或系统)应满足故障-安全设计原则的要求,当出现故障或误操作时,能远离危及行车安全的事故,或减少事故损失。 3.当轨道电路完整并空闲时,轨道电路的工作状态为调整,当轨道电路区段有车占用时,轨道电路的工作状态为分路(开路)。 4.目标距离控制方式根据列车制动模型,直接由目标距离、目标速度、线路参数及列车制动参数等信息生成列车的速度—距离模式曲线,并以此实时监控列车和运行速度保证列车运行安全。 5.列车安全位置是在高精度定位方法得出列车估计位置的基础上增加一定的安全包络得到,分车头(或列车前端)和车尾安全位置两部分。 级列控系统基于GSM-R实现车---地信息双向传输,RBC生成行车许可,轨道电路实现列车占用检查,应答器提供列车定位基准,并具备CTCS-2(或c-2)作为后备。7.CTCS-1级列控系统用于160km/h及以下的区段,由主体机车信号加上安全型运行监控记录装置组成。 8.在CTCS-3级列控系统中,RBC根据从联锁系统获得的进路信息,从车载设备获得的列车位置信息、以及接收到的股道占用、临时限速等信息生成列车控制命令。

完善铁路机车运用安全管理的方案探讨

完善铁路机车运用安全管理的方案探讨 铁路运输是我国居民长距离出行时主要的交通方式,铁路机车是铁路运输的主要设备,铁路机车运用安全管理效果对铁路交通运输质量及安全性具有直接的影响。因此,文章以铁路机车运用安全管理为入手点,分析了铁路机车运用安全管理现状。从旅客列车平稳操纵、乘务员休息管理、乘务员安全预防管理、铁路机车安全信息管理系统等方面,对铁路机车运用安全管理方案进行了深入探究。 标签:铁路;机车;安全管理 前言 在铁路机车运用安全管理过程中,如何提高铁路机车运用安全管理效率,是现阶段铁路机车管理工作的重要任务。因此,针对现阶段铁路机车运用管理中存在的平稳操纵管理目标不明、安全运用管理制度不完善、安全运用管理技术滞后等问题,对铁路机车运用安全管理工作方案进行深入分析具有非常重要的意义。 1 铁路机车运用安全管理现状 1.1 平稳操纵管理标准不明确 由于缺乏明确的铁路机车安全操纵标准,部分铁路机车乘务人员存在不规范操纵行为,增加了铁路机车运用风险。 1.2 安全运用管理制度不完善 虽然在铁路机车运用安全管理中具有对应的安全管理制度,但是随着新型铁路机车的不断涌现,以往安全管理条例滞后性也逐渐凸显。特别是乘务员管理过程中,由于缺乏详细的乘务员管理规范,导致乘务员工作任务超额,压力过大,严重影响了铁路机车运行安全[1]。 1.3 安全预防管理力度不足 虽然现阶段铁路机车运用安全管理人员已认识到了安全预防的重要性,但是由于安全预防机制实施时间较短,仍然存在较多漏洞。对铁路机车各关口安全管理工作造成了一定影响。 1.4 铁路机车运用安全管理技术滞后 在信息化时代,安全管理系统已在铁路机车运用安全管理中发挥了良好的效益。但是,由于以往管理理念的影响,多数铁路管理模块仍然沿用以往落后的管理技术,阻碍了铁路机车安全运用管理效率的提升。

旅客列车平稳操纵

旅客列车平稳操纵 前言 随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。 长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。 结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。 一、平稳操纵 平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和列车运动方程式的角度进行说明。 由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受

作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。 1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动 列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微机限功功能,但在实际现场工作中,牵引力与车钩间隙变化的要求还是不匹配,结合实际工作经验,说明在以下两种情况下启动列车的方法,事实说明,这两种方法可有效的减少或消除不同线路上列车启动时的冲动。 (1)上坡道起动:上坡道起动时,列车缓解,机车制动,此时,受坡道附加阻力(与运行方向相反)的作用,全列车的车钩均处于伸

机车高坡地段牵引旅客列车平稳操纵办法

机车高坡地段牵引旅客列车平稳操纵办法 引言:XXX线最大坡道18‰,使用HXD3C型大功率电力机车牵引。宜万线开通初期,旅客列车平稳操纵屡受部、局领导批评。2011年5月初,成立攻关小组,对大功率机车高坡地段平稳操纵进行攻关。经过反复验证,最终确定了大功率机车高坡地段平稳操纵办法。该办法在宜万线推广后,取得了较好效果,受到了路局领导好评。 旅客列车平稳操纵基本原则: 1.尽可能保持全列车钩处于一种状态(伸张或压缩)。 2.避免或减少牵引~制动间的频繁转换。 3.牵引力或制动力的上升与下降必须平滑。 4.列车在变坡点禁止进行空气制动和机车工况转换。 5.站内停车必须稳准停妥。 一、列车起动 1.列车起动方法 ⑴平道起车法 开车前先缓解列车空气制动,保持机车制动缸压力300KPa;将调速手柄置“*”位,牵引力保持14KN;机车制动缸压力缓解至200KPa,停顿2秒再缓慢缓解至零;列车平稳起动。 ⑵坡道(大于1.0‰)起车法 先将调速手柄置“*”位,保持牵引力为14KN;逐步缓解小闸,待机车与第一位车辆之间车钩伸张后再缓解大闸,使列车平稳起动。 2.全列起动后逐步提手柄至所需级位,使牵引力平滑上升,列车均匀加速。 3.通过侧向道岔时,机车保持一定的牵引力,使列车匀速通过道岔,注意不得超过道岔侧向限制速度。 4.全列车通过道岔后,逐步提手柄,保持牵引力逐步上升,迅速使列车达到运行图规定的速度,确保列车正点运行。 二、途中运行 1.途中调速 ⑴空电配合调速法 列车在长大下坡道调速时采用空电配合调速法。 保持机车电制动力,大闸实施初减。车体稳定后,根据速度要求,适量追加减压,列车速度下降至所需速度后,缓解大闸,保持电制动,使车钩始终保持

旅客列车平稳操纵

旅客列车平稳操纵 列车平稳操纵前言随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。 长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。 结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。 一、平稳操纵平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和

列车运动方程式的角度进行说明。由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。 1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微

电力机车过分相的平稳操纵方法

电力机车过分相的平稳操纵 分相绝缘器是解决接触网电分相用的,设在牵引变电所不同馈出线之间和分区亭等处,一般每20公里左右就有一台。分相绝缘器中性区即无电区的长度约为30米。它既承受接触网不同相位上的电压,又起机械连接作用,为防止电力机车受电弓通过中性区时拖带电弧烧损绝缘件和接触网导线,或造成其它供电事故,电力机车通过分相绝缘时,应将调速手柄回零位,断开主断路器,滑行通过分相绝缘后,才可重新合闸恢复正常操纵。由于电力机车通过分相绝缘时须断电滑行,自然要牵涉到牵引力或电阻制动力的解除与恢复,电阻制动与空气制动的转换等项操纵。有时还存在两台甚至三台机车的配合,线路纵断面的变化等特殊情况。如果司机操纵不当,很容易使列车产生剧烈冲动,甚至发生断钩分离事故。因此,分析电力机车通过分相绝缘时产生冲动的原因,研究平稳过分相的操纵方法,对提高司机操纵水平,防止或减少有害冲动,进而杜绝电力机车在分相绝缘附近发生的列车分离事故具有重要意义。 一、电力机车过分相冲动的原因 1、退级过快,甚至手柄直接回零位。此时机车牵引力顿失或衰减过快,必然打破列车原有平衡状态,后部车辆前冲,产生前阻后拥冲击。 2、退级地点不当。分相绝缘附近有时存在线路纵断面的变化,如由平道转上坡道或坡度变化较大,列车位能增幅过大时,在机车及前部车辆刚

进入上坡道时退级,解除牵引力。此时,由于列车后部大部分车辆处在平道或小坡道上,其惯性远大于前部机车车辆!必然会出现前阻 3、进级不当。当分相绝缘前后为连续大上坡道时,过分相后需立即进级抢速,列车由惰行状态转入牵引状态"车钩及缓冲装置由自然状态变为拉伸状态。如果进级过快过猛,会产生剧烈的拉伸冲击,严重时能拉断车钩。实际行车中曾多次出现这样的事故。 4、电阻制动时退级不当。一是退级过快,电阻制动力衰减过快造成机车前冲。二是空电联合制动时,随着列车速度的不断降低,集中在机车上的电阻制动力本来随之降低,此时不动手柄都会产生机车前冲振动,如再退手柄,甚至为过分相快速退级,必然会使冲动加剧。电阻制动进级不当的表现,处在连续大下坡道上的列车,过分相后需继续使用电阻制动时,速度手柄给得过快过猛,会产生前阻后拥冲击。 5、空电联合配合不当。下坡道过分相如果能使用电阻制动,过分相后能接着使用不致超速,当然好。但是,个别司机对线路纵断面和列车运行情况不清楚,不早点使用电阻制动,到分相跟前一看不行再使用空气制动,列车管没排完风又匆忙退手柄,操作慌乱无序。这样既违反了操作规程,使列车产生了剧烈的前冲振动,又影响了运行时分,如果处在变坡点上极易发生分离断钩事故。 一、上坡道过分相操纵: 1、分相前的退级操纵。上坡道过分相绝缘前应提前抢速,使列车尽可能保持较高速度。遇有停车信号时,在保证安全的前提下,尽可能过分相后停车。如分相前停车,要考虑强迫加速距离,防止将机车停在分相内。因

中国列车运行控制系统-ctcs系统

中国列车运行控制系统 CTCS- Chinese Train Control System CTCS概述 地面子系统可由以下部分组成:应答器、轨道电路、无线通信网络(GSM-R)、列车控制中心(TCC)/无线闭塞中心(RBC)。其中GSM-R不属于CTCS设备,但是重要组成部分。 应答器是一种能向车载子系统发送报文信息的传输设备,既可以传送固定信息,也可连接轨旁单元传送可变信息。 轨道电路具有轨道占用检查、沿轨道连续传送地车信息功能,应采用UM系列轨道电路或数字轨道电路。 无线通信网络(GSM-R)是用于车载子系统和列车控制中心进行双向信息传输的车地通信系统。 列车控制中心是基于安全计算机的控制系统,它根据地面子系统或来自外部地面系统的信息,如轨道占用信息、联锁状态等产生列车行车许可命令,并通过车地信息传输系统传输给车载子系统,保证列车控制中心管辖内列车的运行安全。 车载子系统可由以下部分组成:CTCS车载设备、无线系统车载模块。 CTCS车载设备是基于安全计算机的控制系统,通过与地面子系统交换信息来控制列车运行。 无线系统车载模块用于车载子系统和列车控制中心进行双向信息交换。 CTCS - 简介 TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,还句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。 中国铁路调度指挥系统

参考欧洲ETCS规范,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。如何吸收ETCS规范并结合中国国情更好地再创新,是值得深入研究的课题。 铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。为了满足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。 为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System的缩写“CTCS”) CTCS - 产生背景 由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网内跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。 2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规范。ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规范的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。经过长期的发展,ETCS系统目前已经比较成熟,得到了欧洲各国铁路公司和供货商的广泛认可。 中国人口密集,资源紧张,城市化发展非常迅速。一直处于发展中的中国铁路,始终存在着运量与运能之间的突出矛盾。铁路运输至今仍相当程度地制约着国民经济的快速发展,铁路仍是我国国民经济发展中的一个薄弱环节。为了缓解铁路运输的压力,铁路部门先后实行了六次大提速。 与此同时,高速铁路的蓬勃发展,对铁路的中枢神经——信号系统也提出了新的技术要求。但由于历史及技术原因,中国铁路存在多种信号系统,严重影响了运输效率。铁路信号系统迫切需要建立统一的技术标准,确立数字化、网络化、智能化、一体化发展方向,国产高速铁路列车运行控制系统标准的制定迫在眉睫。为实现高铁战略,铁道部组织相关专家开始制定适合我国国情的中国列车控制系统CTCS(Chinese Train Control System)。 在CTCS 技术规范中,根据系统配置CTCS按功能可划分为5 级。为满足客运专线和高速铁路建设需求,通过对ETCS标准的引进、消化、吸收,并结合成功应用的CTCS-2级列车运行控制系统的建设和运营经验,我国构建了具有自主知识产权的CTCS-3级列控系统标准。CTCS-3级列车运行控制系统是基于GSM-R无线通信的重要技术装备,是中国铁路技术体系和装备

列车运行控制系统毕业设计

列车运行控制系统 铁路通信信号系统是铁路运输的基础设施,是实现铁路统一指挥调度,保证列车运行安全、提高运输效率和质量的关键技术设备,也是铁路信息化技术的重要技术领域。 现代信息类技术的迅速发展。对铁路信号、通信产品和服务产生了重要影响。铁路通信和信号技术,以及现代铁路信息化系统之间的关系和作用变得密不可分。车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。 在列车运行控制技术方面,计算机、通信、控制技术与信号技术集成为一个自动化水平很高的列车运行自动控制系统(简称列控系统)。列控系统不仅在行车安全方面提供了根本保障,而且在行车自动化控制、运营效率的提高及管理自动化等方面,提供了完善的功能,并向着运输综合自动化的方向发展。列控系统技术是现代化铁路的重要标志之一。 随着列车速度的提高,列车的运行安全除了以进路保证外,还必须以专用的安全设备,监督、强迫列车(司机)执行。这些安全设备从初级的列车自动停车装置、自动告警装置、列车速度自动监督系统(或列车速度自动检查装置)发展到列车速度自动控制系统。 列车自动控制系统(A TC)—般指系统设备(包括地面设备和车载设备),同时也是一种闭塞方式,主要包括: 1.以调度集中系统CTC为核心,综合集成为调度指挥控制中心。 2.以车站计算机联锁系统为核心,综合集成为车站控制中心。 3.以列车速度防护与控制为核心,综合集成为列车(车载)运行控制系统。 4、以移动通信(例如GSM-R)平台,构建通信信号一体化的总成系统(例如CTCS)。 列车自动控制系统(A TC)的主要功能有四项: ·检查列车在线路上的位置(列车检测)。 ·形成速度信号(调整列车间隔)。 ·向列车发送速度信号或目标距离信号(信号传输)。 ·按速度或目标距离信号控制列车制动(制动控制)。 上述一至三项功能由地面没备完成,第四项功能由车载设备完成。 本章主要内容为200km/h动车组司机驾驶所需要的列控ATP技术和GSM-R系统中的无线列调功能。 第一节列控ATP系统技术原理 一.列控ATP系统的组成与功能 列控ATP是列车超速防护和机车信号系统的一体化系统,列控ATP系统主要由车载设备及地面设备两大部分组成,地面设备与车载设备一起才能完成列车运行控制的功能。 图7.1.1是列车运行控制系统地面设备原理框图。

浅谈列车的平稳操纵

浅谈列车的平稳操纵 摘要:通过分析造成列车冲动和断钩的原因,研究旅客列车和重载长大货物列车的平稳操纵,并总结了易造成冲动的制动机操作,防止断钩引起的列车分离,保证铁路运输秩序。 关键词:列车运行平稳操纵制动冲击力断钩 0 引言 列车平稳操纵和安全正点是机车乘务员的神圣职责,特快旅客列车和重载长大货物列车的开行,使列车所受的制动冲击力增大,断钩的可能性增加,机车乘务员的列车操纵难度加大。随着铁路布局调整和深化体制改革解放生产力,哈尔滨铁路局通过全面提高机车牵引定数,开行超长重载列车,减少列车开行对数,提高机车运用效率,有效地解决了单线区段的运输能力紧张问题。例如,鸡西、七台河-哈南间开行双机牵引6500吨超长重载列车、伊敏-海拉尔间开行单机牵引6000吨,收到了较好的成效。小编组快速旅客列车的开行,由于区间运行时间紧,提手柄较急,加速度较大,制动时减压量较大、冲动大,造成了旅客列车乘坐的舒适度降低。例如小编组快速旅客列车佳木斯-哈尔滨间运行4小时58分,牡丹江-哈尔滨间运行3小时58分,小编组特快旅客列车哈尔滨-齐齐哈尔间运行2小时18分。虽然开行小编组快速旅客列车和重载长大列车,机务系统在适应铁路跨越式发展、内涵扩大再生产、挖潜提效等方面作出了巨大的贡献,但小编组快速旅客列车和重载长大列车开行,使列车的冲动加剧,发生断钩和列车分离的可能性大增加却困扰着机务系统,研究列车冲动的形成原因和探讨列车平稳操纵经验具有重要的现实意义。 1 列车冲击力产生的原因 列车是由机车和若干车辆通过车钩及缓冲装置连接在一起组成的,由于车钩与车钩存在间隙,当列车起动、加速、制动、缓解以及遇有线路纵断面发生变化时,都会使机车与车辆或车辆与车辆间产生列车冲动。当列车施行制动时,由于列车管的压力从前向后逐步降低,受列车制动管压力波速的影响,前部车辆先产生制动、后部车辆后制动,前部车辆的减速大于后部车辆,列车从前至后逐渐产生压钩力,车钩缓冲装置压缩,在列车全部产生制动作用后,压钩力逐渐减小。当列车缓解时,由于列车管的压力从前向后逐步升高,受列车制动管压力波速的影响,前部车辆先产生缓解、后部车辆后缓解,前部车辆的减速小于后部车辆,列车从前至后逐渐产生伸张力,车钩缓冲装置伸张,在列车完全缓解后,伸张力逐渐减小。 2 车辆断钩的主要原因 在列车制动冲击力的作用下,车钩受力的大小和方向的变化使车钩缓冲装置产生压缩和拉伸变形,在制动力较小时,冲击力将直接由缓冲装置的形变来吸收。如果车钩的压缩力和伸张力进行一增大,由于缓冲装置的行程有限,当缓冲装置被完全压缩和伸张时,缓冲装置不再起缓冲作用,于是出现刚性冲击力。当这种冲击力超过车钩或缓冲装置的强度时,就会使钩舌断裂或缓冲装置损坏,这是车辆断钩产生的主要原因。 正是由于制动时车钩呈压缩状态,缓解时车钩呈伸张状态,所以断钩往往发生在制动后的缓解过程中;还有列车在起伏坡道上运行时,机车突然加载或加载过急,车钩突然由压缩状态向伸张状态转变过程中也容易发生断钩。

城市轨道交通列车自动控制系统简介-精选文档

城市轨道交通列车自动控制系统简介 、前言 随着城市现代化的发展,城市规模的不断扩大,城市轨道交通的发展已成为解决现代城市交通拥挤的有效手段,其最大特点是运营密度大、列车行车间隔时间短、安全正点。城市轨道交通列车自动控制系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 二、列车自动控制系统的组成 列车自动控制(ATC系统由列车自动防护系统(ATP、列车自动驾驶系统(ATO和列车自动监控系统(ATS三个子系统组成。 一列车自动防护( ATP-Automatic Train Protection 系统 列车自动控制系统中的ATP的子系统通过列车检测、列车间 隔控制和联锁(联锁设备可以是独立的,有的生产厂商的系统也可以包含在ATP系统中)控制等实现对列车相撞、超速和其他危险行为的防护。 二列车自动驾驶系统 ( AT0?CAutomatic Train Operation 列车自动驾驶子系统(ATO与ATP系统相互配合,负责车 站之间的列车自动运行和自动停车,实现列车的自动牵引、制动 等功能。ATP轨旁设备负责列车间隔控制和报文生成;通过轨道

电路或者无线通信向列车传输速度控制信息。ATP与ATO车载系 统负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 三)自动监控(ATS-Automatic Train Super -vision )系统 列车自动监控子系统负责监督列车、自动调整列车运行以保证时刻表的准确,提供调整服务的数据以尽可能减小列车未正点运行造成的不便。自动或由人工控制进路,进行行车调度指挥, 并向行车调度员和外部系统提供信息。ATS功能主要由位于OCC 控制中心)内的设备实现。 三、列车自动控制系统原理 一)列车自动防护(ATP) ATP是整个ATC系统的基础。列车自动防护系统(ATP亦 称列车超速防护系统,其功能为列车超过规定的运行速度时即自动制动,当车载设备接收地面限速信息,经信息处理后与实际速度比较,当列车实际速度超过限速后,由制动装置控制列车制动系统制动。 ATP通过轨道电路或者无线GPS系统检测列车实际运行位 置,自动确定列车最大安全运行速度,连续不间断地实行速度监督,实现超速防护,自动监测列车运行间隔,以保证实现规定地行车间隔。防止列车超速和越过禁止信号机等功能。 按工作原理不同,ATP子系统可分为“车上实时计算允许速

机务系统列车平稳操纵资料

列车牵引作为铁路对外经营的一个窗口,其服务质量的好坏将直接影响铁路的声誉和效益,搞好列车的平稳操纵具有重要的现实意义。 一是搞好列车操纵工作,是铁路适应市场经济的需要,关系到铁路运输在国际运输市场的地位和铁路运输的经济效益。 二是平稳操纵可以减少断钩事故的发生,防止因操纵不当而伤害到旅客的生命安全,使列车的通过能力得以提高。 三是平稳操纵工作是铁路机务系统在服务质量上的具体体现,它直接反映机务系统的管理水平、职工素质、机车质量等总体工作的整体水平。 一、旅客列车的平稳启动 列车启动平稳操纵包括手柄的使用和制动机的使用。 1.站内上坡道的车站起车 手柄要适当高一点,提手柄同时撒砂,但电动机电流最好不超过500A。道岔处保持电流平稳,机车越过道岔之后,迅速提手柄增加柴油机转数,提高电动机功率,加速。 2.站内平道出站方向上坡的车站起车 早停车,充分利用地形,预留启动加速距离,使列车在站内就达到一定速度有利于出站爬坡。 3.出站方向下坡道的车站起车 尽量靠前停,起车后可减少整列过岔出站时间,充分利用出站后的下坡达到技术速度,省油节电。 4.坡道起车是个难点 如果列车被迫停在坡度较大的上坡道,停车前要尽量选择停车位置,适当撒砂。停车前单阀单制不小于200kPa,使车钩压缩,再使自阀减压不小于100kPa。当有开车条件时,先提主手柄、电动机电流达到400A左右,先使自阀缓解,再缓解单阀同时迅速提主手柄提高牵引电动机电流,适当撒砂,电动机不超过最大瞬间电流即可。 二、旅客列车途中的平稳运行 1.机车车辆是通过车钩及缓冲装置机械连接成的组合体 缓冲装置为弹性元件,通过拉伸或压缩吸收列车的纵向冲击振动。当机车车辆间的拉伸或压缩变化较小时,被缓冲装置完全吸收,列车不会有明显冲动。当列车纵向冲击振动过大,机车车辆间的拉伸或压缩变化超过了缓冲装置的容量时,列车就会产生明显的冲动。因此,消除列车有害冲动,实现平稳操纵的要点在于,尽量减小车钩的伸缩变化,通过合理操纵使列车的车钩全部拉伸或全部压缩,当车钩由压缩状态过渡到拉伸状态,或由拉伸状态过渡到压缩状态时,要缓和平稳。当列车施行常用制动时,可以通过增大或减小机车制动力,使车钩压缩或伸张,抑制其伸缩变化,减小机车车辆的制动压力差及制动先后时差,实现平稳操纵。无论增大还是减小机车制动力,都应根据当时的运行速度、线路纵断面、列车编组、列车制动力等具体情况,该增则增,该减则减,而且增减要适时、按比例、循序渐进,不能突然增减,否则适得其反。列车行驶处于鱼背形、锅底形线路上施行制动或缓解时,受线路纵断面的影响,会使列车中的车钩伸张与压缩状态的转化加剧,当车辆与车辆之间的拉伸或压缩能量超过缓冲装置的容量时,就会导致冲动。列车行驶在曲线上施行制动与缓解,由于列车随曲线而弯曲,影响了制动波速和缓解波速,扩大了列车前后部车辆的制动与缓解时差,也使冲动增加。所以,施行制动或缓解尽量避免在鱼背形、锅底形及曲线上进行。 2.列车运行中产生冲动的原因及操纵办法 旅客列车在运行阶段发生冲动的原因有空转、功率变换频繁及其他原因。 (1)旅客列车在上坡道运行时,应提高列车运行速度,以较高的速度闯坡。爬坡时,多施行预防撒砂,防止空转发生,持续电流不得超过允许值,待全列车全部进入下坡道时再

列车运行控制系统

列车运行控制系统

列车运行控制系统 -03-25 14:52:17| 分类:铁路基础知识 | 标签: |字号大中小订阅 根据列车在铁路线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整的技术装备。系统包括地面与车载两部分,地面设备产生出列车控制所需要的全部基础数据,例如列车的运行速度、间隔时分等;车载设备经过媒体将地面传来的信号进行信息处理,形成列车速度控制数据及列车制动模式,用来监督或控制列车安全运行。系统改变了传统的信号控制方式,能够连续、实时地监督列车的运行速度,自动控制列车的制动系统,实现列车的超速防护。列车控制方式能够由人工驾驶,也可由设备实行自动控制,使列车根据其本身性能条件自动调整追踪间隔,提高线路的经过能力。 新一代铁路信号设备是由列车调度控制系统及列车运行控制系统两大部分组成的。从技术发展的趋势看是向着数字化、网络化、自动化与智能化的方向发展。它的作用是保证行车安全、提高运输效率、节省能源、改进员工劳动条件。 发展中的列车控制系统将成为一个集列车运行控制、行车调度指挥、信息管理和设备监测为一体的综合业务管理的自动化系统。

列车运行控制系统的内容是随着技术发展而提高的,从初级阶段的机车信号与自动停车装置,发展到列车速度监督系统与列车自动操纵系统。 进入20世纪90年代,世界上已有许多国家开发了各自的列车运行控制系统,其中,在技术上具有代表性且已投入使用的主要有:德国的LZB系统,法国的VM300和TVM430系统,日本新干线的ATC系统等。这些系统的共同特点是:能够实现自动连续监督列车运行速度,可靠地防止人为错误操作所造成的恶性事故的发生,保证列车的高速安全运行。它们之间的主要区别体现在控制方式、制动模式及信息传输等形式方面。 中国近几年来,对国外列车控制系统进行了较深入的研究,对列车控制模式、轨道电路信息传输、轨道电缆信息传输等方面都已取得不少的成果。在开发过程中,还可借鉴欧洲列车控制系统“功能叠加”、“滚动衔接”的经验,从保证基本安全着手,分步完成并真正达到安全、高效、舒适的目标。 中国列车运行控制系统(CTCS)介绍 CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS概述

(完整版)列车运行控制系统期末考试重点总结

m d i n 列控定义:列车运行全过程或一部分作业实现自动控制的系统,可以根据列车在线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整。 列控作用:(1)保障行车安全。识别、消除或减弱危及安全的因素。发现时,向列车发出停车或降速命令(2)保证运输效率。列控系统确定列车最小安全制动距离,最大限度提高线路通过能力。 列控原理:地面设备根据前方行车条件,包括轨道占用情况、进路状态、线路状况以及调度命令,生成行车许可,通过车地通信技术传给车载设备,结合列车数据,车载设备自动计算生成超速防护曲线,并实时与列车运行速度进行比较,超速(允许速度)后及时进行控制,防止列车超速脱轨或与前行列车追尾。列控功能:1.给司机显示允许列车运行的信号、目标距离、目标速度、允许速度等。2.防止列车超过规定的限制速度运行,包括信号显示规定的限制速度、线路限速、车辆限速、临时限速等。3.自动实施速度控制,一旦列车速度超过允许速度,应实施制动控制,使列车减速甚至停车。4.防止与同一轨道运行的列车相撞或追尾。 分级特点:1.CTCS-0干线铁路装备的既有铁路信号设备;地面设备:国产轨道电路构建三显示/四显示自动闭塞,轨道电路实现;车载设备:通用机车信号,列车运行监控记录装置LKJ ;固定闭塞 2.CTCS-1由主体机车信号+安全型运行监控装置组成,面向160km/h 及以下的区段,在既有设备基础上强化改造,增加点式设备,实现列车运行安全监控功能。 3.CTCS-2提速干线、高速铁路;应答器、ZPW-2000A 轨道电路共同完成车地通信;配置车站列控中心TCC ,根据地面信号系统计算列车移动授权凭证;车载ATP+LKJ2000,凭车载信号行车;可下线在CTCS1/0线路;准移动闭塞,地面可不设区间通过信号机 4.CTCS-3主要面向高速铁路;车载配置ATP ,凭车载信号行车;RBC 基于地面信号系统计算列车移动授权;无线通信(GSM-R )传输车地信息;轨道电路检查列车占用,应答器为列车定标;地面可不设区间通过信号机;可下线在CTCS2线路;准移动闭塞;等同于ETCS-2 5.CTCS-4面向高速铁路;CTCS 车载设备ATP ,凭车载信号行车;车载设备发送列车参数,无线闭塞中心RBC 跟踪;列车位置并计算列车移动授权;取消区间轨道电路和通过信号机(移动闭塞);无线通信(例如:GSM-R 、LTE-R 等);列车完整性检查由地面RBC 和列车完整性验证系统完成; 等同于ETCS-3 加速牵引:C=F-W 匀速惰行:C=-W 减速制动:C=-(B+W) F 牵引力,B 制动力,W 阻力 牵引力分析:轮轨间的纵向水平作用力超过最大静摩擦力时,轮轨接触点将发生相对滑动,机车动轮在强大力矩的作用下快速转动,轮轨间的纵向水平作用力变成了滑动摩擦力,其数值比最大静摩擦力小很多,而列车运行速度很低,这种状态称为“空转”。 空转的危害:局部与车轮接触的钢轨将受到严重摩擦,造成严重耗损钢轨,甚至导致车轮陷入钢轨磨损产生的深坑内。该状态下牵引力反而大幅降低,钢轨和车轮都将遭受剧烈磨损。

中国列车运行控制系统(CTCS)

CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS系统有两个子系统,即车载子系统和地面子系统。CTCS 根据功能要求和设配置划分应用等级,分为0~4级。 1. CTCS概述 TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。 中国铁路调度指挥系统 参考欧洲ETCS规,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。如何吸收ETCS规并结合中国国情更好地再创新,是值得深入研究的课题。 铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。为了满

足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。 为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System的缩写“CTCS”) 2. 产生背景 由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。 2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规。ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。经过长期的发展,ETCS系统目前已经比较成熟,得到了欧洲各国铁路公司和供货商的广泛认可。 中国人口密集,资源紧,城市化发展非常迅速。一直处于发展中的中国铁路,始终存在着运量与运能之间的突出矛盾。铁路运输至今仍相当程度地制约着国民经济的快速发展,铁路仍是我国国民经济发展中的一个薄弱环节。为了缓解铁路运输的压力,铁路部门先后实行了六次大提速。 与此同时,高速铁路的蓬勃发展,对铁路的中枢神经——信号系统也提出了新的技术要求。但由于历史及技术原因,中国铁路存在多种信号系统,严重影

旅客列车纵向冲动于操纵关系的研究

旅客列车纵向冲动于操纵关系的研究 发表时间:2019-03-29T15:58:58.367Z 来源:《电力设备》2018年第29期作者:张锐[导读] 摘要:列车在各种工况下,主要受作用于列车上与列车运行方向水平的三种力的作用,即:牵引力、运行阻力、制动力。(中国铁路北京局集团有限公司邯郸机务段河北邯郸 056003)摘要:列车在各种工况下,主要受作用于列车上与列车运行方向水平的三种力的作用,即:牵引力、运行阻力、制动力。从车辆动力学上讲,只要车辆与车辆间车钩间隙不发生变化,就不会造成车辆的冲动。但在实际的列车操纵中,由于车钩经常处于伸张或压缩状态,使列车产生冲动,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因。本人结合近两年操纵列车的实际经验,加上对牵引计算 详细深入的学习、分析,现对旅客列车的平稳操纵谈几点认识,主要说明操纵中减少冲动保证平稳。关键词:旅客列车;纵向冲动;操纵关系一、列车在车站起车时的平稳操纵方法在始发站及中途站停车再起,由于站场线路纵断面的不同,车辆车钩将出现拉伸或压缩的情况,因此在列车保压待发前,应先将机车小闸缓解(需侧压小闸手把进行缓解),牵引给流,使机车与机后第一位车辆车钩处于拉伸状态,而后再将小闸置于全制位。待发车后,司机先提手柄至“1位”,待牵引力上升并稳定后,司机缓慢下拉小闸(注意在小闸200-100千帕时稍作停留),直至机车小闸缓解完毕,待机车与机后第一位车钩拉直后,再缓解大闸,而后运行3-5米后,待全列车钩处于拉伸状态时,再根据限速情况提手柄加速。这样就可能尽量减少列车启动时的冲动。 二、列车加速时的平稳操纵方法由于和谐系列机车牵引力较大,列车在起动时极易出现牵引力波动的情况,从而使列车起动时出现前后耸动的情况,造成列车不平稳。因此在列车起动后的低速加速阶段,司机手柄给定级位应掌握在大于实际速度1位左右,如:列车速度为15km/h时,手柄级位维持在1.8-2.0之间,同时在列车速度不断升高的同时,逐步提高手柄级位,此时为防止机车牵引力波动造成列车前后耸动的情况,司机应持续撒砂。三、列车贯通实验时的平稳操纵方法由于进行列车贯通实验时,乘务员多采取带流制动的方法,但和谐机车牵引力较大,列车在进行贯通实验实施列车制动后,列车降速较为缓慢,而乘务员采取回手柄降低牵引力的情况,此时由于回手柄时机或方法掌握不好,极易出现列车冲动,因此应在进行贯通实验时应注意以下几方面:(一)因贯通试验时司机需操纵的环节较多,建议由二位司机(学习司机)进行车机联控。减压前,需保证手柄级位高于列车当时速度,但手柄级位不宜太高,大于速度0.5级即可,牵引电流保持在200A以下,并保证牵引力稳定。(二)司机实施列车制动后,及时缓解小闸,待列车制动排风完毕,车辆制动上闸后,将手柄级位稍回至缓解速度稍高的级位,高于缓解速度0.2级即可,待列车速度下降至缓解速度,机车牵引上升并稳定后,再缓解大闸。(三)举例说明:列车速度40km/h,手柄级位在4.1-4.5级之间,实施列车制动并车辆上闸后,将手柄回至3.5级,待速度下降至35km/h 以下且牵引力输出稳定后,再缓解列车制动。(四)根据线路纵断面的不同,如在线路坡度较大的上坡道,司机可不回手柄,待列车速度下降后,直接缓解大闸即可,避免发生机车牵引力消失后,机车后座的情况,从而造成列车不平稳四、机车过分相时的平稳操纵司机回手柄时,应将手柄回到稍低于列车速度,待牵引力消失后,再将手柄回至“1”位,稍停后再回至零位,不要直接回到“1”位,更不能直接回0位,避免列车冲动。在机车通过分相合闸且辅助变流器起动后,司机将手柄提至“1”位,观察原边电流上升后,再提手柄,这样可避免初次提手柄无牵引力输出,从而造成二次回手柄再提的情况。通过分相后,给定手柄级位: 1.如列车处于上坡道或平道时,为防止手柄给定级位高于列车速度造成机车前冲列车冲动的情况,因此手柄级位要与列车速度相等或稍低0.1级,例如:列车速度110km/h,则手柄给至10.9或11.0级,待列车速度自然下降、机车牵引力输出上升并稳定后,再将手柄给至固定级位。 2.如列车处于下坡道时,司机给定级位要高于列车速度0.1级,待牵引力输出后,及时提高手柄级位,避免牵引力出现波动。方法,防止牵引力波动或CI 瞬间封锁,列车前后耸动,造成不平稳的情况发生。 五、列车区间调速时的平稳操纵方法列车在区间调速时,应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。如牵引重点列车时,司机可采取在适当地点,切除机车电机,仅留一台或两台电机,降低机车牵引力,在实施列车制动,待排风完毕,车辆上闸后,根据列车降速趋势逐渐再回手柄,但机车手柄级位要始终保持高于列车速度,从而使机车车钩及车辆车钩始终保持在拉伸状态,从而实现列车调速期间的平稳。 六、列车在站停车时的平稳操纵方法列车进站后,司机应做到先实施列车制动,待排风完毕,车辆上闸后,再回手柄,从而使车辆车钩始终保持在拉伸状态,从而实现列车在站停车时的平稳。 七、缓解停车实践证明,如果缓解停车掌握得当,能非常有效的减少甚至消除因制动带来的冲动,但如果掌握不当,会造成比不缓解还要大的冲动,缓解停车的关键是掌握缓解的时机,而这个时机与列车的制动力,减压量,线路纵断面,缓解时的速度,车辆制动机的类型有关,没有理论数据说明上述因素与缓解时机的关系,在近两年的实践中,只能凭积累的工作经验来确定缓解时机,在将来的工作中还需要继续深入的探索和研究。结语

相关文档