文档库 最新最全的文档下载
当前位置:文档库 › 苏制320MW汽轮机 单侧高调门晃动的分析及处理实用版

苏制320MW汽轮机 单侧高调门晃动的分析及处理实用版

苏制320MW汽轮机 单侧高调门晃动的分析及处理实用版
苏制320MW汽轮机 单侧高调门晃动的分析及处理实用版

YF-ED-J7230

可按资料类型定义编号

苏制320MW汽轮机单侧高调门晃动的分析及处

理实用版

In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment.

(示范文稿)

二零XX年XX月XX日

苏制320MW汽轮机单侧高调门晃动的分析及处理实用版

提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。

华能南京电厂1号机组是我国由前苏联全

套引进的首台320 MW超临界燃煤发电机组,汽

机型号为K-320-235-4,于1994年3月投产发

电。汽轮机数字电液调节系统DEH是随主设备

由原苏联全套引进,为电液并存式,二者之间

可进行无扰切换。20xx年1月,DEH电子部分

与DCS一起改为HIACS-5000M分散控制系统,

软件组态由国家电力公司热工研究院完成。因

DEH与现场的原苏联电液转换器信号不匹配而无

法直接连接,特由国内技术单位根据电厂和热

工院的要求,开发制造成功连接二者的功放驱动板件。

机组DEH改造前,曾于1996年、1998年数次发生单侧调门关闭现象,因当时的DEH无数据记录功能,所以普遍认为是DEH误发指令。机组改造以后,DEH系统运行正常,控制精度优于原系统。但是从20xx年7月份开始,甲侧高调门发生了一些不正常情况,极大地威胁着机组的安全稳定运行。

1 故障情况

(1) 2002-07-20T10:07,1号机组负荷283 MW,AGC工况运行,甲侧高调门快速关闭,

1 s后,甲侧高调门快速开启,紧接着,甲乙高调门快速关闭,又自行开启并逐步自动恢复稳定。

(2) 2002-09-07T8:23,1号机组负荷267 MW,AGC工况运行,各运行参数正常,甲侧高调门突然从67%关至37%,机组负荷下降至227 MW,随后立即自动恢复正常。自始至终机组在AGC工况运行。

(3) 2002-11-01T19:08,1号机组负荷280 MW,AGC工况运行,甲侧调门下关引起调门晃动,主汽压力在23.4~24.2 MPa波动,手动解除AGC转入保压工况。

(4) 2002-11-04T9:50,1号机组负荷265 MW,AGC工况运行,甲侧调门下关引起调门晃动,主汽压力在22.4~24.8 MPa波动,1 min 后手动解至液调。

(5) 2002-11-05,1号机组甲侧调门发生10余次晃动,晃动幅度约3%,每次均能自动恢

复正常。

(6) 2002-11-10,1号机组甲侧调门发生多次晃动,晃动幅度约1%,每次均能自动恢复正常。

(7) 2003-12-10,1号机组乙侧高调门突然下关,现象与甲侧类似。 2 故障情况检查分析

(1) 通过检查记录数据和内部趋势点监视曲线,没有发现DEH发出750 mA强关指令。

(2) 没有发现DEH有异常信号送出。

(3) 通过当时信号的趋势显示来看,甲侧调门先动作,之后是两侧调门的振荡并逐步恢复稳定。从现象上看,更像是一种系统经过剧烈扰动后的调节过程。而且乙侧调门振荡幅度很小,基本判定突发的扰动在甲侧调门。

(4) 从第一次故障发生至今,调门晃动幅度越来越小,发生频率越来越高。

(5) 停机后进行调速系统静态特性测试,与以前数据进行对比,发现静态特性没有发生变化。

(6) 解体检查错油门滑阀及电液转换器滑阀,发现油口畅通,但电液转换器滑阀有少许划痕。

(7) 油箱放油清理,确保油质合格。

(8) 为加强DEH功率放大器模板的抗电磁干扰能力,再加一层铜丝屏蔽网。测试发现抗电磁干扰能力大大增强。

(9) 电液转换器控制电缆绝缘检查,结果正常。

(10) 检查甲侧高调门错油门测量机构正

常。

(11) 在进行上述检查中,解体电液转换器机务连接部分后发现,旋转滑阀本身并无卡涩

迹象,而电液转换器盖板垫床(耐油纸箔300 mm ×150 mm)经长期油浸泡后变形,向里侧隆起10 mm,与旋转滑阀位置指示器固定件相碰磨,并

有较深的磨擦痕迹(见图1)。

3 故障原因及处理

据分析,故障原因为:随着机组的运行,

甲侧电液转换器盖板垫床与旋转滑阀位置指示

器固定件相摩擦卡涩,使电液转换器阀杆在电

流很小时回不到中间位置,二次油压的调节主

要靠电流卸载机构完成。卡涩的电液转换器阀

杆偶尔瞬间窜动回到平衡位置,引起二次油压

发生剧烈下降,使得单侧调门快速下关,此时

机组功率、压力失常,DEH控制系统的快速调节发出指令开调门,经过2~3 min的调节,使调门逐步稳定下来。随着时间的推移,摩擦卡涩情况逐渐好转,使调门晃动幅度越来越小。

经过重新调整指示杆,将垫床中间掏空,彻底消除了两者间的磨擦。2002-12-05开机至今,机组一直在线运行,再没发生过甲侧调门波动现象。而后利用2003-12-14机组调停的机会对乙侧高调门电液转换器进行解体检查,发现与甲侧调门晃动原因一样,经过同样的方法处理,彻底消除了这一威胁机组安全的隐患。

汽轮机调门重叠度的优化和调整

汽轮机调门重叠度的优化和调整 单子心 (华能南通电厂江苏南通 226003) 摘要:针对机组高压调门开度对汽机经济性的影响,通过对汽轮机调门升程流量特性变化的分析,对调门重叠度进行整定和调整,以提高机组在高负荷段的经济性。改进后,机组调门调节特性明显改善,机组经济性也得到提高,并为一次调频特性调整改进工作创造了条件,达到预期的目的。 关键词:重叠度;升程流量特性;调节系统 1 汽机调门重叠度简介 1.1 定义: 采用喷嘴调节时,多个调节汽门依次开启,在前一个调门尚未全开时,后一调门便提前打开。当前一个调门全部打时,下一调门提前开启的量称为阀门的重叠度。 1.2 目的: 设置重叠度的目的是为了使汽机控制指令与蒸汽流量成线性关系,保证机组良好的调节特性,有利于机组滑参数运行。 1.3 作用: a)影响调节特性:多个调门依次开启,若后阀在前阀全部开启后才开启,那么根据单个阀门的特性可以推断出多个阀门的升程与流量的关系呈波形曲线,显然这是不符合调节系统静态特性曲线的,为了使配汽机构特性曲线比较平滑,一定要设置重叠度。 b)影响机组的经济性:重叠度过大,即前一阀门开度较小时,后一阀门就已开启,会加大节流作用,此时节流损失变大,对机组的经济性影响也最大。重叠度较小或无重叠度时,节流损失最小,能提高机组经济性,但影响调节特性。 1.4 特性: 下面图1和图2分别为单阀和多阀联合的升程流量特性:

说明: a)图1为典型的单阀升程流量特性曲线,对于单一调门,这种特性曲线是一定的,可以通过试验方法得出。 b)从图1我们可以看出在阀门开度50%左右,出现拐点,特性逐步开始呈非线性。 c)从图1可以得出阀门的有效升程,数值在70%左右,此后阀门再开大,流量增加较少。

浅谈汽轮机调速系统

浅谈汽轮机调速系统 尹琼芳 武汉都市环保工程技术股份有限公司湖北武汉430071摘要:云南德钢22MW高炉煤气发电机组采用了杭州汽轮机厂提供的纯凝汽轮发电机组, 并配套WOODWORLD公司生产的505数字调速器,采用数字电液调速系统调节汽轮机转速 控制机组负荷,本文以该工程为例简要介绍了汽轮机调速系统的组成及调试方法关键词:调速505voith油动机调节汽阀 中图分类号:TK26文献标识码:A 引言 电力系统要求上网的汽轮发电机组必须具备可靠的调节系统,不但反应迅速而且要保证很高的精度,对于整个机组则要求在各种工况下均能保证机组可以安全,高效地运行。在启停过程中则要求既安全可靠又可顺利地进行自动启停。 汽轮机调节系统的型式很多,有机械调速系统、液动调节系统、电液调节系统等,但它的被调量不外乎是转速、功率及压力等信号,问题在于设计一个具有最佳的调节规律的控制系统,对这些调节变量进行运算和修正,保证汽轮机在各种工况下稳定运行,协调汽轮机和锅炉之间的控制,并能满足电力系统的要求。 目前汽机调速系统中使用最多的是汽轮机数字电液控制系统(Digital Electric-Hydraulic Control System,以下简称DEH),整个调速系统可划分为两个部分:电子调速和液压控制。一概述 云南德钢22MW高炉煤气发电工程的调节系统主要由转速传感器,数字式调节器,电液转换器,油动机和调节汽阀组成 Woodward505同时接收来自二个转速传感器的汽轮机转速信号,并与转速给定值进行比较后输出4~20mA执行机构,输出的电信号经电液转换器转换成二次油压(0.15~0.45MPa),二次油压通过油动机操纵调节汽阀,由此来控制汽机进汽量的大小。 二调速系统的组成 2.1调节油系统 整个供油系统提供机组正常运行所必需的润滑油和调节油,正常情况下压力油由汽轮机主轴上的主油泵共给,在启,停机过程中由辅助油泵供给,因主油泵没有自吸能力,使用了注油器给主油泵提供进油,在汽轮机转速升到额定转速后主油泵可投入使用为润滑和调节系统

哈汽600MW汽轮机盘车装置自动投入问题的分析及解决

哈汽600MW机组汽机盘车装置自动投入问题分析及处理 白音华金山发电有限公司王远建 摘要:介绍了汽轮机盘车装置的结构、原理,以及盘车打齿原因的分析及对此故障的对策。 关键词:汽轮机;盘车装置;启动;对策 白音华金山电厂空冷机组汽机为哈汽QFSN-600-2YHG型,其盘车装置为哈尔滨汽轮机厂配套,其控制系统为哈汽自控分厂配套。目前其盘车装置自动功能一直未投入使用,经与东北电科院调试方面及本厂发电运行部了解其原因为:1、本盘车装置啮合机构为气动执行机构啮合速度较快冲击较大;2、此套装置传动齿轮间啮合方式不合适,启动电机时冲击较大;这两方面原因都会造成盘车装置啮合齿轮的损伤(打齿)。下面结构工作其构造原理对此问题进行分析并根据个人经验提出处理方面的建议。 一、本盘车装置结构、作用及工作原理 盘车装置由壳体、蜗轮蜗杆、链条、链轮、减速齿轮、电动机、润滑油管路、护罩、气动啮合装置等组成。(见附图) 盘车装置的壳体由钢板焊接而成,一块水平钢板除了起在低压缸下半安装作用之外,其上还支持电动机、链条壳体、电动机支架、气动啮合缸、操纵杆、护罩等,其下竖直焊接了三块板,它们用来支撑蜗轮蜗杆、齿轮等各种传动零部件。 蜗杆蜗轮副采用SG71型可展曲面二次包络弧面,传动比16。

电动机轴上的链轮通过链条把力矩传给蜗杆轴上的链轮。 链条使用圆销式齿形链,型号为C190-78N×135型,链宽78毫米,内导式。链轮的减速比为1.4。 减速齿轮都采用渐开线圆柱短齿齿轮,模数用8和12两种。 盘车装置的电动机(件73.178.26Z)选用YB225S―6型三相异步电动机,功率30KW,980r/min,该电动机为双伸结构,第二轴伸经工厂补充加工铣成对边宽27毫米的六方,用于手动盘车用。为了保护人身安全,电动机壳体上第二轴伸端安装了一个电动机开关用来控制电动机的启动。当打开第二轴伸的盖时,行程开关将会切断电源,电动机不会转动。 气动啮合装置中气动啮合缸是主要的气动部件,它的活塞直径为40毫米,行程为127毫米。气动啮合缸的连杆和操纵杆相连,活塞的动作直接控制操纵杆的摆动。 润滑油管路是用来润滑蜗杆、蜗轮及减速齿轮的,它装在盘车装置壳体水平板的下方,润滑油由平板上所开的进油口进入,然后经过喷嘴喷到所要润滑之处。润滑后的回油流到低压缸底部,然后从回油管流出。 盘车壳体水平板上面所有部件(电动机除外)都被护罩罩住,除了美观之外还起到保护作用。 盘车齿轮轴和齿轮的衬套都是由多孔青铜制成,它不需要润滑,

汽轮机润滑油系统工作原理

600MW汽轮机润滑油系统工作原理及调试探讨 东方汽轮机有限公司宫传瑶 摘要本文初步探讨了几种常见的汽轮机润滑油系统,对我公司600MW汽轮机所采用的供油方式进行了初步探讨,比较了与其它方式的优缺点。 关键词主油泵油涡轮调试系统 1 概述 随着机组向着大型化、自动化方面发展。机组故障停机次数将严重影响电站运行的经济性。汽轮机供油系统的故障不但要影响到电站运行的经济性,而且对机组的损害影响也是很大的。由于润滑系统的特殊性,在一般的情况下是不允许在线检修的。这样系统设计及设备运行的可靠性及其前期的调试试验工作显得尤其重要。 2 几种典型系统的比较 常见的电站润滑系统主要有以下几种。一:电动油泵、蓄能装置与调节阀系统;二:汽轮机转子驱动主油泵与注油装置系统;我厂600MW汽轮机采用汽轮机转子驱动主油泵与油涡轮升压泵供油方式。 3 系统安全性分析 对于系统来说除去系统本身的因素外,其可靠性主要取决于系统组成元件的可靠性。对于电动油泵系统其可靠性主要取决于电机及其电源的可靠性,由于电机及其相关电气元件制造水平的限制,其可靠性的高低将直接影响系统的可靠性。但是其优点在于系统简单。 对于汽轮机转子驱动主油泵与注油装置系统,由于大大减少了中间环节,这样对于主油

泵运行的可靠性大大提高。由于主油泵采用高位布置,这样在客观要求在主油泵的入口增设供油装置。我厂采用的注油装置主要有射油器与升压泵两种。 4 600MW汽轮机润滑系可靠性探讨 我厂600MW汽轮机润滑系统是我厂转化日立的系统。在系统中采用升压泵为供油装置。油涡轮升压泵作为系统的主要设备起着给主油泵供油,同时将高压油转化为低压油对汽轮发电机组进行润滑。起着参数匹配的作用。而在我公司300MW汽轮机润滑系统中起到此作用的是供油及润滑射油器。系统设计的好坏及相关部件工作的可靠性直接关系到机组运行的安全性。对于我公司600MW汽轮机润滑系统可靠主要取决于主油泵与油涡轮的可靠性。同时对系统的调试及机组启动过程中的监视至关重要。 5 系统简介 600MW汽轮机润滑系统主要分为以下三个分系统。 供油系统由主油泵、节流阀,滤网、喷嘴隔板、叶轮、升压泵组成。 主要作用维持主油泵正常工作。 润滑系统由主油泵、节流阀,滤网、喷嘴隔板、叶轮、溢流阀、轴承组成。 主要作用供给机组润滑油。 旁路系统由一只节流阀将工作油系统节流阀后与与叶轮后连接起来。 主要作用平衡润滑系统与供油系统。 同时在涡轮排油部分安装有溢流阀。主要作用稳定润滑油路压力。系统工作原理:由油涡轮的排油来润滑机组,同时高压油带动升压泵工作给主油泵供油。 润滑油系统图(图0-1-1所示)

某电厂4号机组DEH系统主汽门和高压调门突然关闭原因分析与整改措施

某电厂4号机组DEH系统主汽门和高压调门突然关闭原因分析与整改措施 一. 概述 某厂4号机组为300MW燃煤发电机组,DEH系统采用ABB公司的SYMPHONEY 系统。2013年1月22日机组正常运行过程中,DEH突然发出快关左侧中压主汽门(LSV)和3号高调门(CV3)的1s脉冲指令,导致这2个阀门突然全关,然后又自动恢复。 事件发生后,电厂组织相关技术人员进行分析,认为发生此现象是因为DEH 的信号在柜内通讯发生翻转所致,这也是该类DEH常见的异常故障。机组正常运行过程中突然关闭汽轮机调门,扰动和冲击都比较大,将严重威胁机组安全运行。 二. 原因分析 该事件的发生,DEH和DCS都没有任何记录,为原因分析增加了很大的难度。我们以机组的DEH逻辑为切入口,结合本次事件的现象和以往的一些经验,来逐步剖析事件的原因。 首先,在机组正常运行的情况下,只有通过阀门活动试验电磁阀,DEH才能让中压主汽门关闭。LSV的活动试验电磁阀为22YV,该电磁阀的驱动设计在DEH 系统的M2控制单元,但阀门活动试验的逻辑设计在M4控制单元。阀门活动试验时,动作指令信号在M4控制单元内产生,然后以通信方式送到M2控制单元,从而驱动电磁阀22YV带电。根据以往的经验,ABB这种DCS系统的柜内不同控制单元通讯,经常会发生通信信号翻转的现象。该DEH试验电磁阀的这种设计,极其容易由于通讯信号的翻转而导致电磁阀动作。 再来看CV3,除了正常的伺服阀控制外,还有活动电磁阀16YV控制。16YV 带电也会关闭CV3。与LSV的22YV电磁阀控制一样,16YV也设计在DEH的M2

控制单元,而CV3活动试验逻辑同样设计在M4控制单元。阀门活动试验时,电磁阀的驱动控制与LSV的完全一样,同样极有可能发生通信信号的翻转而导致电磁阀动作。 若CV3由伺服阀控制来关闭,则指令来源于同一个阀门流量指令,其他高压调门如CV1,CV2,CV4等也会动作,但本次只有CV3动作,因此可排除伺服阀指令动作的可能性。 综合上述分析,造成LSV,CV3同时关闭动作1s的原因,极有可能是M4到M2的通信信号发生翻转造成。 通信信号发生翻转是由于网络通信异常造成的,这是一种能够快速自行恢复的通信故障。通信时时刻刻都在进行,偶尔出现一次通信发送/接收异常,本来是属于正常现象,通信处理软件对接收到的数据做无效处理即可,但ABB这种DCS的通信处理存在一个BUG,在收到通信异常数据时,没能发现异常,就没有对数据进行丢弃的处理,而是直接接收该数据,则出现信号翻转就不为奇怪了。要消除该BUG,需要ABB公司对其通信程序进行测试,找出BUG的地方,对该通信程序进行升级。 三. 整改措施 通过分析,认为DEH阀门关闭是由于通信信号发生翻转造成的。为了减少这种信号翻转对DEH系统造成的影响,建议对此类重要通信信号做优化处理,如采取3取2处理、增加信号动作的闭锁条件等。例如,在进行阀门活动试验后,只有开始阀门活动试验时,才能在M2激活电磁阀带电,否则,就对电磁阀进行闭锁,这样,就能避免电磁阀的误动了。 电厂1~4号机组的DEH系统,之前也频频发生类似的信号翻转问题,该问题困扰该厂已久,后来在电科院热工所的建议下,对相关通信信号进行了优化处理,之后再未出现因信号翻转而造成DEH异常的现象。

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制 The Discussion About Turbine Sequence Valve Control (江苏太仓环保发电公司 江苏 太仓 215433)刘铁祥 摘要:介绍电厂汽轮机顺序阀门控制原理,列举工程中的实际应用经验,揭示了汽轮机阀门管理设计的科学性以及在调试和应用中需要掌握的知识点。 关键词:电厂 汽轮机DEH 阀门控制 Abstract: This paper intorduces the principle of turbine sequence valve control and lists some application experiences, interprets the scientificity of turbine valve control as well as the knowledge should be know in commission and practice. Key word: power plant; turbine DEH; valve control 1 前言 现代大、中型发电机组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。其中进汽阀门的管理显然是DEH系统的重要功能,特别是顺序阀控制其管理程序更为科学和复杂。在调试和实际应用中顺序阀控制的参数整定同样非常严谨。如果参数整定不当则单阀与顺序阀的切换扰动过大,汽轮机主要运行参数出现异常,影响机组的安全。由此顺序阀门控制的参数整定是DEH调试的一项重要内容。 2 DEH阀门管理功能 新建机组在试运期间一般采取全周进汽的单阀运行方式,使得转子和定子的温差较小,在变负荷运行时温差影响较小,有利于机组初期的磨合。另外在机组启动过程或调峰方式运行时,也同样需要采用单阀控制。但单阀运行,高压调节阀都参与开度调节,且一般高压调门开度不大,蒸汽通过调节阀门时有较大的节流损失。机组运行要求尽量减少调节阀门的节流损失,提高汽轮机的效率。通常阀门的节流损失在阀门接近全关或接近最大流量时达到最小。顺序阀门控制方式下,只有一个高压调节阀进行开度调节,其余的调门保持全开或全关,这样减少了节流损失,提高机组热效率。下图为顺序阀门控制和单阀控制的热效率比较曲线。从中能明显的看出两者之间的差异。 降低 ( 热 效 率 ) 50 60708090100(负荷百分率)

汽轮机高压调门异常波动的安全技术措施(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 汽轮机高压调门异常波动的安全 技术措施(最新版)

汽轮机高压调门异常波动的安全技术措施 (最新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 #3汽轮机多次发生高压调门异常波动的现象,甚至08月02日因高压调门波动导致主机EH油压低机组跳闸的事故发生。目前尚未找到导致高压调门波动的原因所在,专业督促技术支持部进一步查找造成#3机调门异常波动原因。同时对于3A主机EH油泵与3B主机EH油泵在备用状态下启动电流相差大的状况,专业也将督促技术支持部采取相应措施防止调门异常波动情况下备用EH油泵无法启动。结合近期#3机高压调门波动的现象,做出以下临时应对措施: 1、加强#3汽轮机高压调门开度、EH油压等DCS参数监视,一旦高压调门有异常波动的现象能及时发现; 2、高压调门波动时,观察高调开度DCS曲线波动是否有正弦波动特征、是否有波动发散的趋势; 3、若高压调门波动期间一次调频频繁动作时,在DEH画面新增有投退DEH一次调频回路操作按钮,退出DEH一次调频回路,并退出机

汽轮机盘车装置

第十四章盘车装置 第一节概述 1.1 盘车装置简介 盘车装置是用于机组启动时,带动转子低速旋转以便使转子均匀加热,或在停机后盘动转子旋转,保持转子均匀冷却,减小转子变形的可能。 启动前盘动转子,可以用来检查汽轮机是否具备启动条件,如动静部分是否存在磨擦,主轴弯曲度是否正常等。 汽轮机停机后,汽缸和转子等部件由热态逐渐冷却,其下部冷却快,上部冷却慢,转子因上下温差而产生弯曲,弯曲程度随着停机后的时间而增加,对于大型汽轮机,这种热弯曲可以达到很大的数值,并且需要经过几十个小时才能逐渐消失,在热弯曲减小到规定数值以前,是不允许重新启动汽轮机的。因此,停机后,应投入盘车装置,盘车可搅和汽缸内的汽流,以利于消除汽缸上、下温差,防止转子变形,有助于消除温度较高的轴颈对轴瓦的损伤。 对盘车装置的要求是:它既能盘动转子,又能在汽轮机转子转速高于盘车转速时自动脱开,并使盘车装置停止转动。 盘车装置为链条、蜗轮蜗杆、齿轮复合减速、摆轮啮合的低速盘车装置。 1.2盘车特点 1、汽轮发电机转子在停机时低速盘动转子,可避免转子热弯曲。 2、允许在热态下快速启动。 3、汽轮发电机组冲转时能自动脱开。 4、装在低压缸下半,允许拆卸轴承盖或联轴器盖时无需拆卸盘车装置。 5、在装上或拆去轴承盖的情况下均可盘动汽轮发电机转子。 6、既能自动盘车,又可手动盘车。 7、本厂盘车转速为3.35r/min。

第二节盘车的结构与作用

2.2传动展开图

2.3装置结构及作用 盘车装置由壳体、蜗轮蜗杆、链条、链轮、减速齿轮、电动机、润滑油管路、护罩、气动啮合装置等组成。盘车装置包括手动操纵机构、盘车电流表、转速表等。既可远方操作,也可就地操作。 盘车装置的壳体由钢板焊接而成,一块水平钢板除了起在低压缸下半安装作用之外,其上还支持电动机、链条壳体、电动机支架、气动啮合缸、操纵杆、护罩等,其下竖直焊接了三块板,它们用来支撑蜗轮蜗杆、齿轮等各种传动零部件。 电动机轴上的链轮通过链条把力矩传给蜗杆轴上的链轮。 减速齿轮都采用渐开线圆柱短齿齿轮。 润滑油管路是用来润滑蜗杆、蜗轮及减速齿轮的,它装在盘车装置壳体水平板的下方,润滑油由平板上所开的进油口进入,然后经过喷嘴喷到所要润滑之处。润滑后的回油从回油管流出。 盘车壳体水平板上面所有部件(电动机除外)都被护罩罩住,除了美观之外还起到保护作用。 盘车齿轮轴和齿轮的衬套都是由多孔青铜制成,它不需要润滑,而蜗杆上衬套和蜗杆上的推力面则由润滑油管供压力油润滑。蜗杆和蜗轮始终在油槽的油位下啮合。 啮合齿轮可在轴上转动,该轴装在两块杠杆板上,杠杆板又以齿轮轴为支轴转动。杠杆板的内侧用连杆机构和操纵杆相连接。因此,将操纵杆移到“投入”位置时,啮合小齿轮将与盘车大齿轮啮合,将杆移到“解脱”位置时,啮合小齿轮将退出啮合。由于小齿轮旋转的方向以及它相对杠杆板支撑点的相对位置合理,因此,只要小齿轮在盘车大齿轮上施加转动力矩(小齿轮为施力齿轮),其转矩总会使它保持啮合状态。两只挡块限制了啮合小齿轮向盘车大齿轮的移动,这样就限制了齿轮啮合深度。 当汽轮机冲转后,盘车大齿轮圆周速度足以驱动盘车设备时(此时盘车大齿轮为施力齿轮),大齿轮轮齿所施加的转矩能使盘车机构脱开。 盘车装置是自动啮合型的,能使汽轮发电机组转子从静止状态转动起来,安装在盘车控制柜内,控制设备采用继电器。该装置除能在就地对盘车进行启停及手动盘车操作外,还能接受DCS的起停指令,并送出盘车状态信号和DC4-20mA盘车电流模拟量信号至DCS,使运行人员在控制室对盘车进行监视和控制。

《汽轮机原理》习题及答案_

第一章绪论 一、单项选择题 1.新蒸汽参数为13.5MPa的汽轮机为(b) A.高压汽轮机B.超高压汽轮机 C.亚临界汽轮机D.超临界汽轮机 2.型号为N300-16.7/538/538的汽轮机是( B )。 A.一次调整抽汽式汽轮机 B.凝汽式汽轮机 C.背压式汽轮机 D.工业用汽轮机 第一章汽轮机级的工作原理 一、单项选择题 3.在反动级中,下列哪种说法正确?( C ) A.蒸汽在喷嘴中的理想焓降为零 B.蒸汽在动叶中的理想焓降为零 C.蒸汽在喷嘴与动叶中的理想焓降相等 D.蒸汽在喷嘴中的理想焓降小于动叶中的理想焓降 4.下列哪个措施可以减小叶高损失?( A ) A.加长叶片 B.缩短叶片 C.加厚叶片 D.减薄叶片 5.下列哪种措施可以减小级的扇形损失?( C ) A.采用部分进汽 B.采用去湿槽 C.采用扭叶片 D.采用复速级 6.纯冲动级动叶入口压力为P1,出口压力为P2,则P1和P2的关系为(C)A.P1P2 C.P1=P2 D.P1≥P2 7.当选定喷嘴和动叶叶型后,影响汽轮机级轮周效率的主要因素( A ) A.余速损失 B.喷嘴能量损失 C.动叶能量损失 D.部分进汽度损失 8.下列哪项损失不属于汽轮机级内损失( A ) A.机械损失 B.鼓风损失 C.叶高损失 D.扇形损失 9.反动级的结构特点是动叶叶型( B )。 A. 与静叶叶型相同 B. 完全对称弯曲 C. 近似对称弯曲 D. 横截面沿汽流方向不发生变化 10.当汽轮机的级在( B )情况下工作时,能使余速损失为最小。

A. 最大流量 B. 最佳速度比 C. 部发进汽 D. 全周进汽 1.汽轮机的级是由______组成的。【 C 】 A. 隔板+喷嘴 B. 汽缸+转子 C. 喷嘴+动叶 D. 主轴+叶轮 2.当喷嘴的压力比εn大于临界压力比εcr时,则喷嘴的出口蒸汽流速C 1 【 A 】 A. C 1C cr D. C 1 ≤C cr 3.当渐缩喷嘴出口压力p 1小于临界压力p cr 时,蒸汽在喷嘴斜切部分发生膨胀, 下列哪个说法是正确的?【 B 】 A. 只要降低p 1 ,即可获得更大的超音速汽流 B. 可以获得超音速汽流,但蒸汽在喷嘴中的膨胀是有限的 C. 蒸汽在渐缩喷嘴出口的汽流流速等于临界速度C cr D. 蒸汽在渐缩喷嘴出口的汽流流速小于临界速度C cr 4.汽轮机的轴向位置是依靠______确定的?【 D 】 A. 靠背轮 B. 轴封 C. 支持轴承 D. 推力轴承 5.蒸汽流动过程中,能够推动叶轮旋转对外做功的有效力是______。【 C 】 A. 轴向力 B. 径向力 C. 周向力 D. 蒸汽压差 6.在其他条件不变的情况下,余速利用系数增加,级的轮周效率η u 【 A 】 A. 增大 B. 降低 C. 不变 D. 无法确定 7.工作在湿蒸汽区的汽轮机的级,受水珠冲刷腐蚀最严重的部位是:【 A 】 A. 动叶顶部背弧处 B. 动叶顶部内弧处 C. 动叶根部背弧处 D. 喷嘴背弧处 8.降低部分进汽损失,可以采取下列哪个措施?【 D 】 A. 加隔板汽封

汽轮机高压调门关闭原因分析

汽轮机高压调门关闭原因分析 发表时间:2018-11-02T17:21:50.623Z 来源:《知识-力量》2018年12月上作者:付红宾[导读] 本文对汽轮机高调门因电缆过于靠近高温缸体超温造成绝缘老化通讯中断调门关闭,运行中突然关闭的原因进行分析,阐明了电缆处于高温环境发生故障的原因。对于汽轮机周边电缆涉及和改造具有广泛的借鉴意义。关键词(大唐许昌龙岗发电有限责任公司,河南省禹州市 461690) 摘要:本文对汽轮机高调门因电缆过于靠近高温缸体超温造成绝缘老化通讯中断调门关闭,运行中突然关闭的原因进行分析,阐明了电缆处于高温环境发生故障的原因。对于汽轮机周边电缆涉及和改造具有广泛的借鉴意义。关键词:控制电缆;调门;DEH 一、前言 大唐某公司一期两台机组为上海汽轮机厂制造的350MW亚临界机组。汽轮机控制系统采用OV ATIAN型数字式电液控制系统,其设计为分散布置、双路供电,系统DPU主模件采用冗余配置。液压系统采用上海汽轮机厂成套的高压抗燃油EH装置。汽轮机主蒸汽阀门TV和调门GV连接电缆布置在高中压缸体阀门两侧(详见图3),缸体保温与电缆线槽距离30至50cm。热工人员定期检查发现汽轮机高压调门控制电缆有老化现象,利用检修机会将单侧的调门电缆进行了更换。机组在控制电缆更换后启动一天突发汽轮机高压调门关闭故障,严重影响机组的安全生产运行。 二、故障及处理经过 某年某月某日,2号机组负荷指令250MW,启动B制粉系统(B、C、D、E磨运行)增加机组出力。在加负荷过程中突然机组出力快速下降,检查2号机高压GV3调门实际已经关闭,DEH画面显示指令和反馈均为100%。汽轮机组调门开启顺序见图1所示。 图1 汽轮机高压截止阀和调节阀位置顺序图 检查DEH机柜GV3伺服卡LVDT指示灯不亮,分析反馈LVDT控制回路存在问题,对GV3进行处理,缓慢将GV3指令逐渐强制为0,并对GV3进油隔离确保故障期间该调门不发生误动,对GV3控制回路进行排查发现GV3调门油动机端子箱至地面端子箱的LVDT反馈中间电缆线间阻值3Ω,由于GV3指令和反馈电缆通过同一段电缆桥架接入同一端子箱,为防止指令电缆存在同样问题,将GV3指令电缆和反馈电缆全部更换,更换后对GV3调门试验,动作正常。 三、阀门关闭原因分析 (一)阀门外观机械检查和分析 检修人员现场检查关闭调门门杆和反馈杆实际位置均在关闭状态,和DEH控制画面中阀门状态有相反的情况。初步分析应为阀门和远端状态不对应,怀疑通讯中断,需热工人员检查GV阀门控制回路。 (二)GV阀控制回路检查分析 GV阀控制回路由两部分组成,第一部分为正常投运回路,第二部分未试验回路。控制指令接受GV总给定。DEH自动方式下,GV总给定经单阀或顺序阀的阀门流量特性曲线函数转换为GV阀门指令开度。从实际阀门动作和就地现场阀门状态分析,应为远端和就地信号传输中断造成阀门指令与就地不对应现象。GV阀门动作逻辑见图2所示。

汽轮机控制系统

汽轮机控制系统 包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。控制系统的内容和复杂程度依机组的用途和容量大小而不同。各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。 调节系统用来保证机组具有高品质的输出,以满足使用的要求。常用的有转速调节、压力调节和流量调节3种。①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。图 1 [液压式调速 器]为两种常用的液压式调速器的

工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速 器])或旋转阻尼(图1b[液压式调速

器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。②压力调节:用于供热式汽轮机。常用的是波纹管调压器(图 2 [波纹管调压 器])。调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。流量信号通常用孔板两侧的压力差(1-2)来测得。图3 [压

差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。 汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。通常采用的是机械式(采用机械和液压元件)调节系统。而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。70年代以前,不论机械式或电液式调节系统,所用信息全是模拟量;后来不少机组开始使用数字量信息,采用数字式电液调节系统。 汽轮机调节系统是一种反馈控制系统,是按自动控制理论进行系统动态分析和设计的。发电用汽轮机的调节工业和居民用电都要求频率恒定,因此发电用汽轮机的调节任务是使汽轮机在任何运行工况下保持转速基本不变。在图 4 [机械式调速系

汽轮机盘车装置投退操作规范

盘车装置投退操作规范 、投入条件 1.转子惰走至“0”后方可投入盘车装置。 2.盘车装置已送电,控制柜“电源指示灯”亮。 3.检查系统润滑油压0.078 —0.147MPa,顶轴油压各轴承6- 13MPa,盘车控制柜顶轴油 压正常指示灯亮(>6MPa )润滑油压正常指示灯亮(>0.0294MPa )。 4.开启盘车装置润滑油进油门及电磁阀进油手动门。 二、盘车投入操作方法 (1 )运方投入 ①将就地盘车控制柜“就地/远方”选择开关切至“远方('就地控制柜任何开关均无效)o ②微机内点击“盘车允许”按钮。 ③微机内点击“手动”或“自动”或“点动” ④盘车电机启动,检查盘车电流在正常范围内且无波动。 ⑤就地关闭盘车装置电磁阀进油手动门。 (2)就地手动投入 ①将盘车装置就地控制柜上“远方/就地”选择开关切至“就地'(此时微机内任何有关操 作均无效) ②将控制柜“盘车允许/禁止”选择开关切至“盘车允许” ③将控制柜“手动/自动/点动”选择开关切至“手动” ④点击控制柜“电磁阀动作”按钮,观察盘车切换手柄移动直至啮合到位,检查控制柜 “啮合到位”指示灯亮。盘车电机启动,检查电流在正常范围且无波动。 ⑤关闭盘车装置电磁阀进油手动门。 (3)就地自动投入 ①将盘车电机就地控制柜“就地/运方”选择开关切至“就地”

②将控制柜“盘车允许/禁止”选择开关切至“盘车允许。” ③将控制柜“手动/自动/点动”选择开关切至“自动。” ④检查控制柜“盘车啮合到位”指示灯亮,盘车电机启动,电流在正常范围内且无波动。 ⑤关闭盘车装置电磁阀进油手动门。 (4)就地点动投入 ①将盘车电机就地控制柜“就地/运方”选择开关切至“就地。” ②将控制柜“盘车允许/禁止”选择开关切至“盘车允许。” ③将控制柜“手动/自动/点动”选择开关切至“点动。” ④点击控制柜“点动投入”按钮,观察盘车切换手柄移动直至控制柜“盘车啮合到位”指示灯亮,检查电机自启动,盘车电流在正常范围内无波动。 ⑤关闭盘车装置电磁阀进油手动门。 三、盘车停止操作方法 1、运方停止盘车装置操作规范 ①微机内点击“盘车停止”按钮,就地检查盘车电机已停止。 ②点击“甩开”按钮,检查甩开到位指示灯亮。 ③关闭盘车装置润滑油进油手动门。 2、就地停止盘车装置操作规范 ①就地点击“盘车停止”按钮。 ②检查盘车电机已停止,点击“甩开”按钮,检查“甩开到位”指示灯亮。 ③关闭盘车装置润滑进油手动门。

汽轮机调门重叠度的优化和调整

汽轮机调门重叠度的优化和调整 1 汽机调门重叠度简介 1.1 定义: 采用喷嘴调节时,多个调节汽门依次开启,在前一个调门尚未全开时,后一调门便提前打开。当前一个调门全部打时,下一调门提前开启的量称为阀门的重叠度。 1.2 目的: 设置重叠度的目的是为了使汽机控制指令与蒸汽流量成线性关系,保证机组良好的调节特性,有利于机组滑参数运行。 1.3 作用: a)影响调节特性:多个调门依次开启,若后阀在前阀全部开启后才开启,那么根据单个阀门的特性可以推断出多个阀门的升程与流量的关系呈波形曲线,显然这是不符合调节系统静态特性曲线的,为了使配汽机构特性曲线比较平滑,一定要设置重叠度。 b)影响机组的经济性:重叠度过大,即前一阀门开度较小时,后一阀门就已开启,会加大节流作用,此时节流损失变大,对机组的经济性影响也最大。重叠度较小或无重叠度时,节流损失最小,能提高机组经济性,但影响调节特性。 1.4 特性: 下面图1和图2分别为单阀和多阀联合的升程流量特性:

说明: a)图1为典型的单阀升程流量特性曲线,对于单一调门,这种特性曲线是一定的,可以通过试验方法得出。 b)从图1我们可以看出在阀门开度50%左右,出现拐点,特性逐步开始呈非线性。 c)从图1可以得出阀门的有效升程,数值在70%左右,此后阀门再开大,流量增加较少。

说明: a)多个阀门的联合特性就只取决于阀门开启的重叠度。 b)图2中的曲线Ⅰ选择的重叠度过小,即前一阀开度很大后才开后一阀,系统在调节时会生产较大的波动,在后一阀门将开启时,会发生调门大幅窜动的情况。 c)图2中的曲线Ⅱ选择了合理的重叠度,阀门联合升程流量特性波动小,系统调节性能基本呈线性,稳定性最好。 d)图2中的曲线Ⅲ选择的重叠度过大,除前面所讨论的会使经济性下降外,还会破坏升程流量特性的线性度,会使两个阀门重叠部分的流量增长过快,产生局部不等率变动,当汽机在该功率下运行时,有可能出现晃动。 2 重视调门升程流量特性的变化 阀门重叠度有两种表述:行程重叠度和压力重叠度。 行程重叠度:ξH =1-H1 / H max 式中H1为后阀开始开启时的前阀行程,H max为前阀全开行程。 压力重叠度:ξp =1-P1 / P max 式中P max和P1为后阀开始开启时,前阀的前、后压力。 行程重叠度只有几何意义,没有热力学意义,压力重叠度才是决定调门调节特性的关键参数,一般以前一阀门开至前、后压力比P1/P max=0.85~0.90时,后一阀开启较

汽轮机调门伺服阀在线更换

汽轮机调门伺服阀在线更换 摘要:阐述了德州电厂660MW汽轮机液压控制系统伺服阀在线隔离更换的方法、步骤和伺服阀更换后的恢复以及注意事项。对每个汽门未配置EH油管路隔离阀、配汽机构设计不允许单阀方式运行的汽轮机,伺服阀在线更换是可行的。 现代大机组汽轮机调节系统广泛采用了电液转换机构—伺服阀,随着机组长周期连续运行和调速液压油系统内、外部环境条件的变化,油中的颗粒杂质导致伺服阀滤网堵塞或部套卡涩,使得调速汽门动作迟缓,严重时致使阀门不能按要求开启或关闭,影响机组的出力能力,甚至导致因汽门拒关而造成汽机超速事故。因此,利用机组的计划检修机会,按时清洗、校验伺服阀,更换进油滤网,确保伺服阀的正常工作显得非常重要。即使定期对伺服阀进行清洗维护,在机组运行中,仍时常发生伺服阀滤网堵塞或脏污卡涩问题,进行故障伺服阀的在线更换,对保证汽轮机安全连续运行和确保发电,具有很强的实用意义。德州电厂660MW#5机组在运行中相继出现#2、4、1高调门开关动作迟缓、拒开等故障,在线进行了高压调速汽门油动机伺服阀的隔离更换。 1 汽轮机调门液压控制单元简介 德州电厂660MW汽轮机为美国GE公司生产的TC4F型四缸四排汽凝汽式汽轮机,左右两个主汽门分别对应#1、2和#3、4调速汽门,图-1为调门液压控制单元原理图,液压控制单元主要包括液压关断阀、快速动作电磁阀、伺服阀、液压油缸等,设计液压油供油二路,分别为压力油和安全油,回油一路。伺服阀为MOOG产743F003A型两级三线圈四通流量控制阀,流量25加仑/min。图-2 为液压关断阀原理图。GE公司设计供货的汽轮机无单阀运行方式,单个调门的液压油路未配置隔离阀门,因此,在正常运行工况,无法关闭单个调门或单独隔离其供油。 图-1 调门液压控制单元 2 伺服阀的隔离、更换 首先根据机组的运行情况和调速汽门存在的问题确定是否由伺服阀故障引起,如果调速汽门对开关指令响应迟缓、滞后甚至拒动,或伴有开度与其它调门偏差逐渐增大,严重时会导致调门开度摆动,即可断定该调门伺服阀故障。一旦发现伺服阀故障,应尽快采取措施进行隔离、更换。伺服阀隔离、更换步骤如下

汽轮机原理试题与答案

绪论 1.确定CB25-8.83/1.47/0.49型号的汽轮机属于下列哪种型式?【 D 】 A. 凝汽式 B. 调整抽汽式 C. 背压式 D. 抽气背压式 2.型号为N300-16.7/538/538的汽轮机是【B 】 A. 一次调整抽汽式汽轮机 B. 凝汽式汽轮机 C. 背压式汽轮机 D. 工业用汽轮机 3.新蒸汽压力为15.69MPa~17.65MPa的汽轮机属于【C 】 A. 高压汽轮机 B. 超高压汽轮机 C. 亚临界汽轮机 D. 超临界汽轮机 4.根据汽轮机的型号CB25-8.83/1.47/0.49可知,该汽轮机主汽压力为8.83 ,1.47表示汽轮机的抽汽压 力。 第一章 1.汽轮机的级是由______组成的。【C 】 A. 隔板+喷嘴 B. 汽缸+转子 C. 喷嘴+动叶 D. 主轴+叶轮 2.当喷嘴的压力比εn大于临界压力比εcr时,则喷嘴的出口蒸汽流速C1【A 】 A. C1 C cr D. C1≤C cr 3.当渐缩喷嘴出口压力p1小于临界压力p cr时,蒸汽在喷嘴斜切部分发生膨胀,下列哪个说法是正确的? 【B 】 A. 只要降低p1,即可获得更大的超音速汽流 B. 可以获得超音速汽流,但蒸汽在喷嘴中的膨胀是有限的 C. 蒸汽在渐缩喷嘴出口的汽流流速等于临界速度C cr D. 蒸汽在渐缩喷嘴出口的汽流流速小于临界速度C cr 4.汽轮机的轴向位置是依靠______确定的?【D 】 A. 靠背轮 B. 轴封 C. 支持轴承 D. 推力轴承 5.蒸汽流动过程中,能够推动叶轮旋转对外做功的有效力是______。【C 】 A. 轴向力 B. 径向力 C. 周向力 D. 蒸汽压差 6.在其他条件不变的情况下,余速利用系数增加,级的轮周效率ηu【A 】 A. 增大 B. 降低 C. 不变 D. 无法确定 7.工作在湿蒸汽区的汽轮机的级,受水珠冲刷腐蚀最严重的部位是:【A 】 A. 动叶顶部背弧处 B. 动叶顶部内弧处 C. 动叶根部背弧处 D. 喷嘴背弧处 8.降低部分进汽损失,可以采取下列哪个措施?【D 】 A. 加隔板汽封 B. 减小轴向间隙 C. 选择合适的反动度 D. 在非工作段的动叶两侧加装护罩装置 9.火力发电厂汽轮机的主要任务是:【B 】 A. 将热能转化成电能 B. 将热能转化成机械能

汽轮机自动盘车控制

300MW汽轮机自动盘车控制屏说明书及调试大纲

300MW汽轮机自动盘车控制屏 说明书

汽轮机在启动冲转前必须查证转子的初始弯曲情况,为此应该先用盘车装置盘动转子作低速转动,以便运行人员作仔细检查。 汽轮机停机后,汽缸和转子等部件还处于热状态,如果大轴静止不动,则会因上下温差而产生大轴弯曲。为了使汽轮机在停机后随时可以启动,必须使用盘车装置将转子不间断地转动,使转子四周温度均匀,这样大轴就不会发生弯曲,同时也能减小汽缸等部件的上下温差。 一、动盘车控制屏的功能 自动盘车控制屏具有强制手动、手动、自动等功能。 1.强制手动 在盘车控制屏中有一个开关SA2(见73A〃757Z-2第2张),当扳动此开关至接通状态时,无论外界处于何种状态,均可以直接为盘车电机提供380VAC的电源,使盘车电机转动。 注意:此项功能只作为检测或在非正常情况下强起盘车电机使用,在正常情况下,不建议使用此项功能。 2.手动控制 需要手动投入时,将控制屏面板上的“盘车选择”开关旋到“手动”位置,此时盘车控制屏处于手动控制方式下(见73A〃757Z-2第1张)。当润滑油压建立,顶轴装置已投入,各轴颈均已顶起,运行人员推动手柄使主动齿轮与汽轮机 大齿轮啮合,盘车手柄位置的行程开关 33 TGE 处于啮合状态,确认遮盖盘车电动机 轴的曲柄端的保护盖是处于正确位置上,即:行程开关 33 TGC 闭合,此时按下控制 屏面板上的“启动”按钮,控制屏为盘车电机供电,汽轮机开始盘车。 当需要停盘车时,按下控制屏面板上的“停止”按钮,此时盘车电机停止转动,汽轮机盘车停止。 汽轮机启动后,当汽轮机的主轴转速大于盘车转速时,盘车就能自动脱扣。 拉杆系统将盘车手柄从工作位置推向非工作位置,盘车手柄位置的行程开关 33 TGE 处于非啮合状态,控制屏停止为盘车电机供电,盘车电机停止转动。当汽机转速

汽轮机高调门流量特性优化试验方案

汽轮机高调门流量特性优化 试验方案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

皖能马鞍山发电有限公司2号机组汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写 ____________ 审阅 ____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格 式文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。 4、试验方法及步骤 各高调门单个流量特性测试

浅谈汽轮机调节系统常见缺陷及消除办法

浅谈汽轮机调节系统常见缺陷及消除办法 发表时间:2019-07-09T15:27:19.170Z 来源:《电力设备》2019年第6期作者:陈爽 [导读] 摘要:在我国社会经济快速发展的态势下, 汽轮机作为一种重要的能量转换设备在火力发电厂中得到了较为广泛的应用。 (广东惠州天然气发电有限公司广东惠州 516082) 摘要:在我国社会经济快速发展的态势下, 汽轮机作为一种重要的能量转换设备在火力发电厂中得到了较为广泛的应用。汽轮机运用过程中可以实现热能向动能的转变, 同时它对提高生产工作效率也具有十分重要的影响作用。汽轮机的调节系统影响汽轮机的稳定性,当调节系统发生故障会导致汽轮机无法正常进行能源的转化和可持续利用。本文针对汽轮机调节系统的常见缺陷进行讨论,提出相应的解决办法。 关键词:汽轮机;调节系统;常见缺陷;消除办法 汽轮机调节系统是由电子控制器、操作系统、执行系统、保护机构、以及油系统这五个部分组成的。其整体系统结构是在先进的网络技术与控制技术推动下实现的。可以为汽轮机系统提供强大的技术支持与保护功能,不但提高了汽轮机系统运行的可靠性,也提高了汽轮机功率、频率等运行参数的精度,是汽轮机发电安全的保障。 1 汽轮机调节系统概述 汽轮机调节系统的主要构成部分为电子控制器、油系统以及保护系统等,故障发生的主要部位是油系统和保护系统以及执行系统部分。我国目前对于汽轮机的修理由原来对于机组的大量定期修理变成了现在的预测维修状态,而调节系统的故障诊断成为实现预测修理的重要部分,能够帮助我国尽快实现预测维修。因此,对于调节系统的了解和故障分析能够帮助解决整个机组的安全问题,有利于汽轮机调节系统的正常运行。 系统的管理主要通过高压的控制油系统和润滑油系统来实现。这两种油系统对于整个汽轮机的调节系统有十分重要的功能。润滑油系统主要是保证汽轮机供油环节得以稳定进行。执行系统部分的功能主要是依靠高压控制油来保证驱动机构的驱动力,从而对整体汽阀进行有效控制。汽轮机调节系统的保护系统主要由危急遮断器等部件组成,主要负责在汽轮机调节系统出现超速或者是其他的故障时,进行保护以及安全停机,保证整个汽轮机的安全运行。目前我国汽轮机实现并网之后,汽轮机的旋转速度已经作为一个提前反馈的信号来对整个汽轮机的调节系统进行整体的掌控。 2 汽轮机运行中调节系统常见缺陷及消除办法 2.1 油系统缺陷 油质不良是引起调节系统出现故障的主要原因之一,汽轮机中的抗燃油主要是由三芳基磷酸这种化合物组合而成,人工合成的三芳基磷酸本身很容易在空气中发生氧化反应,分解成一种酸性油脂物质,而较差的油脂,则更不具稳定性,分解出的酸性油脂更多。当这种酸性油脂流入到机械内部时,就会对内部零件造成一定的腐蚀,从而形成腐蚀物,这些腐蚀物与劣质抗燃油中的杂质就会混合在一起,造成管路中的磨损与堵塞,使内部零件无法正常移动,造成系统部分的迟缓与卡涩,引发系统内部结构功能失灵。 其次是油压不稳,汽轮机在运行过程中,经常会出现EH油压、AST油压异常波动的现象,而这种波动的现象会经常出现,引发这种波动的原因有几点,第一是油路问题,也就是说汽轮机本身的供油系统或者是EH油路系统存在问题,第二是电液伺服卡塞造成的,第三是汽轮机的调节阀可能存在一定问题,第四是汽轮机的保护系统出现了故障。 最后是油系统内部漏油,这也是油系统中最严重的故障,会使系统整体油压变低,从而引起机械动力不足,调节系统迟缓,降低汽轮机的整体稳定性,引起漏油的原因有很多,例如零部件的磨损,使零件之间缝隙越来越大,或者是活塞垫片破漏等,这些都是造成汽轮机调节系统漏油的原因。 在对于油系统缺陷的消除办法,可以从以下几点做起。首先针对油质不良,可以让工人定期进行油质化验,从而确保汽轮机中使用的抗燃油能够达到使用标准,并且可以时常对抗燃油进行滤油,将油中的杂质清除,同时要定期清理油管,大流量清洗轴管,以减少管道油污对调节系统内部的危害。其次是对于油压不稳,当出现油压不稳时,应尽快停机检修,先对主油泵进行排查,若汽门油阀关闭,主油泵的供油还正常,则不是主油泵的问题,接下来可以依次类推,通过不同汽阀的测试,找到问题所在,维护人员要认真的做好记录,步步深入,进行有针对性的修正。 2.2 滑阀构造缺陷分析 无论是对于全液压调节系统还是半液压调节系统,滑阀都很容易出现故障,最常见的就是滑阀卡涩,这也影响汽轮机调节系统中最主要的问题,当滑轮卡涩时整个调节系统都会变得缓慢,严重时就会造成部分结构瘫痪,影响整体结构的运作,出现这种现象的主要原因就是在机械常年累月工作时,部分零件出现锈化,这就造成了滑轮的卡涩。其次是卡油门的过封度,尤其是在断流放大机构中,机械设备的整体运行并不是非常稳固,即使是在转动速度不变的情况下,脉冲轴也会出现一定的波动,这种情况可以不予理会,可是当错油门的过封度出现问题时,就会使油管中出现涡流,造成主流泵的波动,这就会造成较大的机械故障。 对于滑阀构造缺陷消除办法首先应该做的就是优化设计,为防止滑阀卡涩。首先在设计制造时严格把关,提高每一个零件的精细度,从而减小滑阀零件的误差,并且还可以在调剂系统中安装一个对压弹簧,对压弹簧的位置选择,可以与滑阀形成一个顶针式的联系结构,然后将弹簧安放在弹簧座,这就可以有效的控制系统内部的平衡油压结构。而在错油门滑阀设计上,首先就是要选择合适的错油门形状,这样才能使平口式错油门,在油口开启时形成一个相同方运动的力,实现油流对孔之间的射流,从而减小油管之中的涡流,进而降低调节系统中的整体设备波动。 2.3 配汽结构缺陷分析 配汽结构缺陷最主要的体现就是凸轮磨损,由于汽轮机每天都要进行长时间的运作,因此工作负荷很大,这就很容易造成配汽结构凸轮磨损,而这种磨损会随着时间变化推移发生不同性质的部位结构变形。这就为系统调节造成了一定程度的困扰,当这个变形的部位进行调节工作时,就会将整体系统中的问题暴露出来,使得调节系统的不等率偏离正常水准,造成与其他配件之间的不和谐运作,进而使整个调节系统出现大频率的震荡。其次是调速汽门的节流锥也是产生配汽结构故障的一种原因,汽轮机在工作时,一不小心触碰节流锥的汽门,就会使汽门内的汽量发生变化,很容易产生空负荷现象,而这种空负荷最容易造成节流锥的磨损,从而导致整个调节系统出现摆动。在对配汽结构缺陷消除办法可以通过对角与顺序结合的配汽方式减少配汽中的不平衡汽流,这样即使负荷增加,也会降低节流损失,

相关文档
相关文档 最新文档