文档库 最新最全的文档下载
当前位置:文档库 › 二_三阶可逆矩阵可以相似对角化的几何条件_谢伟献

二_三阶可逆矩阵可以相似对角化的几何条件_谢伟献

二_三阶可逆矩阵可以相似对角化的几何条件_谢伟献
二_三阶可逆矩阵可以相似对角化的几何条件_谢伟献

矩阵的可对角化及其应用

附件: 分类号O15 商洛学院学士学位论文 矩阵的可对角化及其应用 作者单位数学与计算科学系 指导老师刘晓民 作者姓名陈毕 专业﹑班级数学与应用数学专业07级1班 提交时间二0一一年五月

矩阵的可对角化及其应用 陈毕 (数学与计算科学系2007级1班) 指导老师刘晓民 摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似;线性变换 Matrix diagonolization and its application Chen Bi (Class 1,Grade 2007,The Depart of Math and Calculation Science) Advisor:Lecturer Liu Xiao Min Abstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

04 矩阵的对角化

第四讲 矩阵的对角化 对角矩阵的形式比较简单,处理起来较方便,比如求解矩阵方程Ax b =时,将矩阵A 对角化后很容易得到方程的解。以前我们学习过相似变换对角化。那么,一个方阵是否总可以通过相似变换将其对角化呢?或者对角化需要什么样的条件呢?如果不能对角化,我们还可以做哪些处理使问题变得简单呢? 一、特征征值与特征向量 1. 定义:对n 阶方阵A ,若存在数λ,及非零向量(列向量)x ,使得Ax x λ=,则称λ为A 的特征值,x 为A 的属于特征值λ的特征向量。 ☆ 特征向量不唯一; ☆ 特征向量为非零向量; ☆ ()0I A x λ-=有非零解,则det()0I A λ-=,称

det()I A λ-为A 的特征多项式。 例1 12 22122 2 1A ????=?????? ,求其特征值和特征向量。 【解】1 22 det()2 122 21 I A λλλλ----=------ 2 (1)(5)λλ=+-, 特征值为 121λλ==-,35λ=, 对于特征值1λ=-,由 ()0I A x --=, 1232222220222ξξξ?? ??????=???????????? , 1230ξξξ++= , 312ξξξ=-- ,

可取基础解系为 1101x ?? ??=?? ??-?? ,2011x ????=????-??, 所以属于特征值1λ=-的全部特征向量为 1122k x k x + ,其中12,k k 为不全为零的数. 对于特征值5λ=,由 (5)0I A x -=, 1234222420224ξξξ--?? ??????--=????????--???? , 123ξξξ== , 可取基础解系为 3111x ?? ??=?????? , 所以属于特征值1λ=-的全部特征向量为 33k x ,其中3k 为非零的数. 2. 矩阵的迹与行列式

(完整版)可逆矩阵教案

§1.4 可逆矩阵 ★教学内容: 1.可逆矩阵的概念; 2.可逆矩阵的判定; 3.利用转置伴随矩阵求矩阵的逆; 4.可逆矩阵的性质。 ★教学课时:100分钟/2课时。 ★教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求逆的方法;难点在于转置伴随矩阵概念的理解。 ★教学设计: 一可逆矩阵的概念。 1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2.定义1.4.1(可逆矩阵)对于矩阵A,如果存在矩阵B,使得AB BA E ==则称A为可逆矩阵,简称A可逆,并称B为A的逆矩阵,或A的逆,记为1 A-。 3.可逆矩阵的例子: (1)例1 单位矩阵是可逆矩阵; (2)例2 10 11 A ?? = ? ?? , 10 11 B ?? = ? - ?? ,则A可逆; (3)例3 对角矩阵 100 020 003 A ?? ? = ? ? ?? 可逆; (4)例4 111 011 001 A ?? ? = ? ? ?? , 110 011 001 B - ?? ? =- ? ? ?? ,则A可逆。 4.可逆矩阵的特点: (1)可逆矩阵A都是方阵; (2)可逆矩阵A的逆唯一,且1 A-和A是同阶方阵;

(3)可逆矩阵A 的逆1A -也是可逆矩阵,并且A 和1A -互为逆矩阵; (4)若A 、B 为方阵,则1 AB E A B -=?=。 二 可逆矩阵的判定及转置伴随矩阵求逆 1.方阵不可逆的例子: 例5 1100A ?? = ??? 不可逆; 例6 1224A ?? = ??? 不可逆; 2.利用定义判定矩阵可逆及求逆的方法: (1)说明利用定义判定及求逆的方法, (2)说明这种方法的缺陷; 3.转置伴随矩阵求逆 (1)引入转置伴随矩阵 1)回顾行列式按一行一列展开公式及推论 1122,0,i s i s in sn D i s a A a A a A i s =?+++=?≠?L (1,2,,)i n =L , 1122,0,j t j t nj nt D j t a A a A a A j t =?+++=? ≠?L (1,2,,)j n =L ; 2)写成矩阵乘法的形式有: 111211121 1212221222212 120 00000n n n n n n nn n n nn a a a A A A A a a a A A A A A E a a a A A A A ?????? ? ?? ? ? ???== ? ??? ? ?? ? ?????? ? L L L L L L M M O M M M O M M M O M L L L 3)定义1.4.2(转置伴随矩阵)设ij A 式是()ij n n A a ?=的行列式中ij a 的代数余 子式,则 1121 112 22 2* 12n n n n nn A A A A A A A A A A ?? ? ? = ? ??? L L M M O M L 称为A 的转置伴随矩阵。 (2)转置伴随矩阵求逆: 1)* AA A E =; 2)定理1.4.1 A 可逆的充分必要条件是0A ≠(或A 非奇异),且

矩阵可对角化的判定条件开题报告

矩阵可对角化的判定条件开题报告 开题报告 矩阵可对角化的判定条件 选题的背景、意义 矩阵最初是作为研究代数学的一种工具提出的,但是经过两个多世纪的发展,现在已成为独立的一门数学分支?矩阵论。矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已应用于自然科学、工程技术、社会科学等许多领域。如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、计算机层析及 X 射线照相术等方面都有广泛的应用。随着现代数字计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数和矩阵计算,成为从事科学研究和工程设计的科技人员必备的数学基础。 矩阵是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常遇到。它在二十世纪得到飞速发展,成为在物理学、生物学、地理学、经济学等中有大量应用的数学分支,现在矩阵比行列式在数学中占有更重要的位置。 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多。但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结。因此,我就针对这方面进行系统的分类归纳和总结,对一些理论

进行应用和举例,给出算法。特别给出了解题时方法的选择。 矩阵的应用在现代社会中是十分广泛的,本文围绕有限维线性空间上的线性变换对角化问题与矩阵可对角化相互转换进行研究.根据矩阵的多项式对矩阵对角化问题进行判断,这种方法不仅为探讨矩阵对角化提供了一个简便的工具,也把矩阵和有限维空间相结合.在现代科技中,很多问题都是运用此类方式。 矩阵对角化问题只是矩阵理论中的一个小问题,但是一个基础问题,这样矩阵可对角化作为矩阵理论里的最基础的知识,就显得格外的重要.通过对《高等代数》,《科学计算方法》等有关资料的查阅和分析研究,为我们对判定矩阵的可对角化的条件提供了相关依据和理论. 文献[1]和[2]介绍了广义逆矩阵和一类特殊矩阵可对角化的判定条件,利用子空间关于矩阵的最小多项式研究了矩阵可广义对角化的充要条件,给出了一种更简单的判别仅有两个互异特征根的矩阵与对角阵相似以及求特征向量的方法。 文献[3]总结了利用循回阵的性质找出一个矩阵可对角化的充要条件。任意阶矩阵可以对角化的充要条件是相似于一个阶循回阵, 形式最简单的矩阵是对角阵。矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,但不是任何一个阶矩阵都可以对角化。 文献[4]总结了对矩阵的计算中用到了对角化的性质。该文详细地分析了Doolittle LU分解过程,基于分解过程的特点,在MPI(Message-Passing interface)并行环境下,提出了按直角式循环对进程进行任务分配的并行求解方法。实验证明该方法可以有效地减少进程间数据通信量,从而加快计算速度。 文献[5]?[7] 阐述了矩阵可对角化的条件以及对实对称矩阵的可对角化,

可逆矩阵及其简单应用

它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩 阵的过程。可逆矩阵作为矩阵乘法的逆运算,是矩阵的一种重要运算,在解决矩阵问题中起着重要的作用。因而掌握可逆矩阵的求法,在解决实际问题时,往往可以起到事半功倍的效果。本文将对一些常用的可逆矩阵的求法作系统的总结, 并进一步介绍几种常见得可逆矩阵的在数学领域和通讯领域的简单应用。 【关键词】矩阵可逆矩阵通信 【Abstract】In the discussion of linear equations, we can see that some

important properties of the linear equations are reflected in its coefficient matrix and augmented matrix of nature, what`s more, the process of the solution performance of the process of transformation of these matrices. Invertible matrix multiplication as the inverse of the matrix is an important matrix operations,and plays an important role in solving the problem. master ring the method of Invertible matrix often can play a multiplier effect in solving practical problems.The following are the system summary of the commonly used reversible method for the evaluation of Invertible matrix, and further descripitions of several common application in the field of mathematics and simple communications. 【Key Words】Matrix Invertible matrix Communications

矩阵可逆的条件以及特征值,特征向量与可对角化条件

矩阵可逆的条件: 1 秩等于行数 2 行列式不为0,即|A|≠0 3 行向量(或列向量)是线性无关组 4 存在一个矩阵,与它的乘积是单位阵 5 齐次线性方程组AX=0 仅有零解 6 非齐次线性方程组AX=b 有唯一解 7 可以经过初等行变换化为单位矩阵,即该矩阵等价于n阶单位矩阵 8 它去左(右)乘另一个矩阵,秩不变 特征值、特征向量与可对角化条件: 定义:设A 是数域F 上n 阶矩阵,如果存在可逆阵P ,使P -1AP 为对角阵,那么A 称为可对角化矩阵。 并不是所有的n 阶矩阵都可对角化,例如,A= 就一定不可对角化,所以我们要首先讨论可对角化的条件。 数域F 上n 阶矩阵A 可对角化的充分必要条件为存在n 个数λ1 , λ2 , ... , λn F 及n 个线性无关的向量p1,p2,...,pn, 使APi = λiPi i=1,2, ...,n. 。 数域F 上n 阶矩阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。

特征值与特征向量的性质: (1 )相似矩阵有相同的特征多项式,从而有相同的特征值、相同的迹和相同的行列式。 (2 )如果λ是矩阵A 的一个特征值,是一个多项式,那么是矩阵多项式的一个特征值 . (3 )如果A 是一个可逆阵,λ是A 的一个特征值,那么, 1 /λ 是A -1 的一个特征值 . (4 )属于不同特征值的特征向量线性无关。 (5 )对矩阵A 的每个特征值,它的几何重数一定不超过代数重数。(6 )如果A 是一个是对称矩阵,那么它的每个特征值的几何重数与代数重数相等,从而它有个线性无关的特征向量,他一定可以对角化。

最新对角化矩阵的应用本科

对角化矩阵的应用本 科

XXX学校 毕业论文(设计) 对角化矩阵的应用 学生姓名 学院 专业 班级 学号 指导教师 2015年 4 月 25 日

毕业论文(设计)承诺书 本人郑重承诺: 1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的. 2、本论文(设计)中,所有实验、数据和有关材料均是真实的. 3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果. 4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负. 学生(签名): 2015 年4月25日

对角化矩阵的应用 摘要 矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值. 【关键词】对角化;特征值;特征向量;矩阵相似;线性变换

Application of diagonalization matrix Abstract Matrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value. [Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation

矩阵可逆性总结

矩阵的可逆性 摘要:本文通过由矩阵的除法引出可逆矩阵,介绍了可逆 矩阵的定义,性质,算法及其判定方法等等,之后对可逆矩阵进行了推广,还有关于广义逆的介绍。 关键词:可逆矩阵;伴随矩阵;三角矩阵;广义逆矩阵 正文: 一、逆矩阵的定义: 因为数的除法a ÷b 是:已知两数的乘积b 及其中一个因数a 求另外一个因数x ,也就是解方程ax =b 。只要能求出除数a 的倒数a ?1使aa ?1=1,则除法b ÷a 可以转化为乘法b ×a ?1。而我们联想到矩阵的运算上,对矩阵A , B ,用B “除以”A 也就是要求一矩阵X 使AX =B 。在之前的学习过程中已经了解了矩阵的乘法不满足交换律,还应考虑求另一矩阵Y 满足YA =B 。如果能找到一个A ?1满足条件A ?1A =I ,在矩阵方程AX =B 两边左乘A ?1就得到A ?1AX =A ?1B 从而X =A ?1B 。如果这个A ?1还满足条件AA ?1=I ,则A (A ?1B )=B ,X =A ?1B 就是AX =B 的唯一解。类似地,如果上述A ?1存在,可知YA =B 有唯一解Y =BA ?1。 所以给逆矩阵下一个定义:对于矩阵A,如果存在矩阵B满足条件AB=且BA=I (表示单位矩阵),就称A可逆,并且称B是A的逆。表示成B=A 1- 二、矩阵可逆的等价条件: 1、A 可逆?F ∈?B ,使得I AB =;(定义法) 2、若A 可逆,则A 是方阵且0≠A ; 3、若0≠A ,则方阵A 可逆; 4、n 级矩阵A 可逆?矩阵A 的秩为n,即r(A )=n ; 5、n 级矩阵A 可逆?A 的行向量组线性无关; 6、n 级矩阵A 可逆?A 的列向量组线性无关; 7、n 级矩阵A 可逆?A 可以表示成一系列初等矩阵的乘积; 8、n 级矩阵A 可逆?A 可以经过一系列初等行变换化为I ; 9、n 级矩阵A 可逆?A 可以经过一系列初等列变换化为I ; 10、n 级矩阵A 可逆?齐次线性方程组A x=0只有唯一零解. 三、逆矩阵的性质: 1、 逆的唯一性: 假如A 可逆,那么A 的逆B 是唯一的。

可对角化矩阵的应用

可对角化矩阵的应用 矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类,特殊的矩阵,在理论上和应用上有着十分重要的意义。下面列举几个常见的可对角化矩阵的应用的例子。 1.求方阵的高次幂 例设V 是数域P 上的一个二维线性空间,12,εε是一组基,线性变换σ在12,εε下的矩阵A =2110?? ?-?? ,试计算k A 。 解:首先计算σ在V 的另一组基12,ηη下的矩阵,这里 ()()121211,,12-?? ηη=εε ? -?? , 且 σ 在 12 ,ηη下的矩阵为 1 112 1112 12 11111121012111 01 2 1 ----?????????? ?? ??== ? ??? ????? ?----- ????????? ?????显然 1 10 10 1k k ??? ? = ? ? ?? ?? ,再利用上面得到的关系1 1121111112101201---???????? = ? ??? ?---???????? 我们可以得到 1 21111111111211 101201121201111k k k k k k k ----+????????????????=== ? ??? ? ????? ? ------+???????????????? 2.利用特征值求行列式的值。 例:设n 阶实对称矩阵2A =A 满足,且A 的秩为r ,试求行列式2E A -的值。 解:设AX=λX ,X ≠0,是对应特征值λ的特征向量,因

为2A A =,则22X X λE =AE =A =λ,从而有()20X λ-λ=,因为X ≠0, 所以()1λλ-=0,即λ=1或0,又因为A 是实对称矩阵,所以A 相似于对角矩阵,A 的秩为r ,故存在可逆矩阵P ,使 1 00 0r E P AP -??= ??? =B ,其中 r E 是r 阶单位矩阵,从而 1102220 2r n r n r E E A PP PBP E B E -----=-=-= =2 3由特征值与特征向量反求矩阵。 若矩阵A 可对角化,即存在可逆矩阵P 使,其中B 为对角矩阵,则 例 设3阶实对称矩阵A 的特征值为,对应的特征向量为,求矩阵A 。 解:因为A 是实对称矩阵,所以A 可以对角化,即A 由三个线性无关的特征向量,设对应于231λ=λ=的特征向量为 () 123,,T P X X X =,它应与特征向量 1 P 正交,即 []1123,00P P X X X =++=,该齐次方程组的基础解系为 ()() 231,0,0,0,1,1T T P P ==-,它们即是对应于231λ=λ=的特征向量。 取 ()123010100,,101,010101001P P P P B -???? ? ? === ? ? ? ?-???? ,则 1P A P B -=, 于是1110 010******* 210101010 0011010011 1010022A PBP -? ? ?-?????? ? ??? ?===- ? ??? ? ??? ? ?--??????- ??? 4判断矩阵是否相似

矩阵可对角化的条件.

第二节矩阵可对角化的条件 定义1 如果矩阵能与对角矩阵相似,则称可对角化。 例1设,则有:,即。从而 可对角化。 定理1 阶矩阵可对角化的充分必要条件是有个线性无关的特征向量。 证明:必要性如果可对角化,则存在可逆矩阵,使得 将按列分块得,从而有

因此有,所以是的属于特征值的特征向量,又由可逆,知线性无关,故有个线性无关的特征向量。 充分性设是的个线性无关的特征向量,它们对应的特征值依次为 ,则有。令,则是一个可逆矩阵且有: 因此有,即,也就是矩阵可对角化。 注若,则,对按列分块得 ,于是有 ,即 ,从而。可见,对角矩阵的元素就是矩阵的特征值,可逆矩阵就是由的线性无关的特征向量所构成的,并且特征向量的顺序依赖于对角矩阵。 定理2 矩阵的属于不同特征值的特征向量是线性无关的。

证明:设是的个互不相同的特征值,是的属于特征值的特征向量,现对作数学归纳法证明线性无关。 当时,由于特征向量不为零,因此定理成立。 假设的个互不相同的特征值对应的个特征向量是线性无关的。设 是的个互不相同的特征值,是的属于特征值的特征向量。又设 (1) 成立。则有,又将(1)式两边同乘得: 从而有,由归纳假设得 ,再由两两互不相同可得 ,将其代入(1)式得,因此有,从而 线性无关。 推论1 若阶矩阵有个互不相同的特征值,则可对角化,且 。 定理3 设是阶矩阵的个互异特征值,对应于的线性无关的特征 向量为,则由所有这些特征向量(共个)构成的向量组是线性无关的。

证明:设,记, ,则有,且或是的属于特征值的特征向量。若存在某个,,则由属于不同特征值的特征向量线性无关知 ,矛盾。因此有,,又由已知得 ,,因此向量组 线性无关。 定理4设是阶矩阵的一个重特征值,对应于的特征向量线性无关的最大个数为,则,即齐次线性方程组的基础解系所含向量个数不超过特征值的重数。 证明:用反证法。由于是的属于特征值的特征向量当且仅当是齐次线性方程组的非零解,因此对应于的特征向量线性无关的最大个数与齐次线性方程组的基础解系所含向量个数相等。设是齐次线性方程组的一个基础解系,且假设,则有。现将扩充为一个维线性无关向量组,其中 未必是的特征向量,但有是一个维向量,从而 可由向量组线性表示,即: 因而有:

矩阵可对角化的充分必要条件论文

学号 20080501050116 密级 兰州城市学院本科毕业论文 矩阵可对角化的充分必要条件 学院名称:数学学院 专业名称:数学与应用数学 学生姓名:练利锋 指导教师:李旭东 二○一二年五月

BACHELOR'S DEGREE THESIS OF LANZHOU CITY UNIVERSITY Matrix diagonalization of the necessary and sufficient condition College : Mathematics Subject : Mathematics and Applied Mathematics Name : Lian Lifeng Directed by : Li Xudong May 2012

郑重说明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的,所以数据、资料真实可靠。尽我所能,除文中已经注明应用的内容外,本学位论文的研究成果不包含他人享有的著作权的内容。对本论文所涉及的研究工作做出的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名 : 日期 :

摘要 矩阵是否可以对角化,是矩阵的一条很重要的性质。对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。本文给出了矩阵可对角化的几个充分必要条件和相应的证明。 关键词:方阵;特征值;特征向量;对角化

ABSTRACT Matrix diagonalization is a very important nature of matrix.Understanding the necessary and sufficient conditions of similarity can be diagonalized , has been a difficult problem in linear algebra.In this paper, several necessary and sufficient conditions and the corresponding proofs of matrix diagonlization have been given. Key words:square;eigenvalue;eigenvector;diagonalization

矩阵可对角化的充分必要条件开题报告

本科毕业论文开题报告 题目:矩阵可对角化的充分必要条件院系:数学学院 专业:数学与应用数学 班级: 081(本) 姓名:练利锋 指导教师:李旭东 申报日期: 2011年12月30日

开题报告填写要求 1.开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业论文(设计)工作前期内完成,经指导教师签署意见审查后生效。 2.开题报告内容必须用黑墨水笔工整书写,按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.学生查阅资料的参考文献应在3篇及以上(不包括辞典、手册),开题报告的字数要在1000字以上。 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年9月26日”或“2004-09-26”。

毕业论文开题报告 1.本课题的研究意义 矩阵是高等代数中的重要组成部分,是许多数学分支研究的重要工具。而对角矩阵作为矩阵中比较特殊的一类,形式简单,研究起来非常方便。而研究矩阵的对角化及其理论意义也很明显,相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式…….如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素进行研究。 另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。 事实上,在大学的学习中矩阵对角化理论占有非常重要的地位,因此,对它的研究意义重大。然而在高等代数学习中,大部分学生对矩阵对角化的充分必要条件的学习效果不是很理想,对什么样的矩阵可以对角化以及对角阵的求解步骤了解不深,常常出现错误,我认为主要的原因是他们对矩阵的相似对角化概念及其充分必要条件理解不透彻,本课题给出矩阵可对角化的基本概念和可对角的充分必要条件,并给出其他一些引申的充分必要条件和性质,对这些条件和性质的证明有助于学生对矩阵可对角化的条件进一步理解和强化,以及对可对角化矩阵的相似对角阵的求法和性质进一步理解掌握。从而使高等代数中的重要概念——矩阵的对角化理论比较完整的呈现在我们面前。 总之,矩阵对角化的充要条件是一个传统但又很重要的研究课题,具有广泛的应用价值。在很多有关矩阵数学问题的分析和证明中,我们都需要用到矩阵的对角化。本文给出了矩阵可对角的若干充分必要条件,希望对同学们在今后的学习和实际应运中有一定的帮助。 2.本课题的基本内容

矩阵可对角化的总结

矩阵可对角化的总结莆田学院数学系02级1班连涵生21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n 级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。 [关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵 说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。 引言 所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。 定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。矩阵P称为由A 到B的相似变换矩阵。[]1[]2[]3[]4

定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[] 1[]2[]3[] 4 定义3:设A 是数域P 上一个n 级方阵,若多项式 ()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[] 2 定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[] 1[]2[] 3 一、首先从特征值,特征向量入手讨论n 级方阵可对角化的 相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[] 1[]2[]3[] 4 证明:必要性:由已知,存在可逆矩阵P ,使 1 2 1 n P AP λλλ-????? ?=??????即12n AP P λλλ?? ????=????? ? 把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即 12[,,,]n P P P P = 于是有

二阶、三阶矩阵逆矩阵的口诀

求二、三阶矩阵逆矩阵的记忆口诀 1、问题的提出 在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。 2、知识储备 1.1 对于n 阶方阵,如果同时存在一个n 阶方阵,使得 AB=BA=E 则称A 阵可逆,并把方阵B 成为方阵A 的逆矩阵,记作A -1 1.2 n 阶行列式A 的各个元素的代数余子式构成的矩阵,叫做A 的伴随矩阵,如下: 1121112 22212......*.......n n n n nn A A A A A A A A A A ??????=?????? 1.3 方阵A 可逆的充分必要条件是0A ≠,当A 可逆时,* 1 A A A -= 3、二阶矩阵的逆矩阵的记忆口诀 记忆口诀:主对调,次换号,除以行列式 推导: 假设a b A c d ??=????,,,,a b c d R ∈,且A 可逆,那么根据知识储备1.2 *d b A c a -??=??-?? 所以呢,*1d b c a A A A A --????-??== 4、三阶矩阵的逆矩阵的记忆口诀 记忆口诀:除以行列式,别忘记。 去一行,得一列,二变号,

余不变,231 312 1) 整体要除以行列式,不能忘记 2) 去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列 3) 所求得的逆矩阵的第二列是按照231 312 规律得到数字 加了一个负号,其余的第一列,第三列不加负号 对于三阶矩阵33,a b c A d e f A R g h i ?????=∈?????? ,且A 可逆 1()1()()ei hf bi hc bf ce A fg id cg ia cd af A dh ge ah gb ae hd -----????=----????----?? (1) 先分析公式(1)的第一列,研究如下表格 公式(1)矩阵的第一列是表1所有元素的组合,组合规律称为(231312规律) Step1: 表格1 第一行的第二、三、一列乘以第二行的三、一、二列得到ei , fg , dh Step2: 表格1中第二行的二、三、一列乘以第一行的三、一、二列得到hf , id , ge Step3: 由step1得到的数据减去step2得到的数据,得到公式(1)的第一列。 同样的道理,公式(1)的第二列,第三列求出

矩阵对角化及应用论文

矩阵对角化及应用 理学院 数学082 缪仁东 指导师:陈巧云 摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征. 关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量. 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择. 1.矩阵对角化概念及其判定 所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵. 定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使 1X AX - 为对角矩阵,则称矩阵A 可对角化. 矩阵能否对角化与矩阵的特征值特征向量密切相关. 定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组 AX X λ= (1) 存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量. (1)式也可写成, ()0E A X λ-= (2) 这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 =0E A λ-, (3)

即 11 121212221 2 0n n n n nn a a a a a a a a a λλλ------=--- 上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵 的特征多项式. 11 1212122 21 2 ()||n n A n n nn a a a a a a f E A a a a λλλλλ------=-= --- 111n n n n a a a λλλ--=++ ++ 显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值. 设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明 (ⅰ)121122n nn a a a λλλ+++=++ +; (ⅱ)12 n A λλλ=. 若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程 =0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都 是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-; 第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值; 第三步:对于 的每一个特征值λ,求出齐次线性方程组: ()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数) . 设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为 A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ;

可逆矩阵教案(可编辑修改word版)

? ? ? ? ? ? ? §1.4 可逆矩阵 ★ 教学内容: 1. 可逆矩阵的概念; 2. 可逆矩阵的判定; 3. 利用转置伴随矩阵求矩阵的逆; 4. 可逆矩阵的性质。 ★ 教学课时:100 分钟/2 课时。 ★ 教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★ 教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵 求逆的方法;难点在于转置伴随矩阵概念的理解。 ★ 教学设计: 一 可逆矩阵的概念。 1. 引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2. 定义 1.4.1(可逆矩阵)对于矩阵 A ,如果存在矩阵 B ,使得 AB = BA = E 则称 A 为可逆矩阵,简称 A 可逆,并称 B 为 A 的逆矩阵,或 A 的逆,记为 A -1 。 3. 可逆矩阵的例子: (1) 例 1 单位矩阵是可逆矩阵; ?1 0 ? ? 1 0 ? (2) 例 2 A = 1 1 ? , B = -1 1 ? ,则 A 可逆; ? ? ? ? ? 1 0 0 ? (3) 例 3 对角矩阵 A = 0 2 0 ? 可逆; 0 0 3 ? ? 1 1 1? ? 1 -1 0 ? (4)例 4 A = 0 1 1? , B = 0 1 -1? ,则 A 可逆。 ? 0 0 1? 4. 可逆矩阵的特点: (1) 可逆矩阵 A 都是方阵; ? 0 0 1 ? (2) 可逆矩阵 A 的逆唯一,且 A -1 和 A 是同阶方阵;

相关文档