文档库 最新最全的文档下载
当前位置:文档库 › 讨论稿编制说明-高纯钌化学分析方法 杂质元素含量的测定 辉光放电质谱法

讨论稿编制说明-高纯钌化学分析方法 杂质元素含量的测定 辉光放电质谱法

讨论稿编制说明-高纯钌化学分析方法 杂质元素含量的测定 辉光放电质谱法
讨论稿编制说明-高纯钌化学分析方法 杂质元素含量的测定 辉光放电质谱法

高纯钌化学分析方法杂质元素含量的测定辉光放电质谱法

编制说明

(预审稿)

贵研铂业股份有限公司

二O二零年七月

高纯钌化学分析方法

杂质元素含量的测定

辉光放电质谱法

1 工作简况

1.1 方法概况

1.1.1 项目的必要性

高纯贵金属通常应用于高科技精密仪器制造等特殊行业,比如在半导体制造及航天航空等高精尖科技领域中常用到高纯贵金属铂、钯、钌、铱等及其合金、靶材。但是国内高纯贵金属提纯技术、加工制造技术等与发达国家相比,尚有一定差距,这与需要不断提升高纯贵金属分析检测能力是密切相关的。关键基础材料技术提升与产业化是近期国家重点研发专项,“超高纯稀有/稀贵金属检测评价技术与标准研究”已被列入2017年国家重点研发项目《超高纯稀有/稀贵金属制备技术》中,项目编号:2017YFB0305405。高纯钌杂质元素含量测定辉光放电质谱法行业标准分析方法的研究,可补充我国高纯贵金属化学分析检测领域的研究内容,有助于提升我国高纯贵金属研究、制备技术突破和产业化生产的技术水平,提升中国高纯贵金属行业国际核心竞争力,对高纯贵金属的研发、生产、贸易及促进该领域的技术进步有着重要的意义。

1.1.2 适用范围

本标准适用于高纯钌中杂质元素含量的测定。各元素测定范围:0.001μg/g~10μg/g。

1.1.3可行性

高纯贵金属杂质检测中遇到的难溶解特点,使其在溶液进样的分析技术GFAAS、ICP-AES、ICP-MS等应用中遇到瓶颈,近年来,随着GD-MS的发展和应用,其对固体样品直接进样以及优异的痕量、超痕量分析能力,为贵金属纯度分析提供了技术支撑。

贵研铂业股份有限公司自2016年引进英国NU仪器公司ASTRUM型辉光放电质谱仪,积极开展高纯金属杂质元素检测GD-MS方法研究。标准起草人员具有丰富的方法研究经验和标准起草经验。

1.1.4 要解决的主要问题

检索到目前为止的国内外现行发布标准中,未见高纯钌中杂质元素的GD-MS检测标准方法。传统的纯钌中杂质元素含量检测方法以直流电弧原子发射光谱法为主,如YS/T 682-2008《钌粉》附录,但由于高纯钌基体难于制备、粉末光谱标准系列配制困难、设备老化、测定耗时等因素,该方法已难满足当前定量测定需求;现有钌粉标准分析方法GB/T 23275-2009 《钌粉化学分析方法铅、铁、镍、铝、铜、银、金、铂、铱、钯、铑、硅量的测定辉光放电质谱法》,测定钌粉产品GB/T 682-2008《钌粉》规定的12个杂质元素,在SM-Ru99.90%和SM-Ru99.95%两个牌号杂质要求范围内,尚不能完全满足纯钌或高纯钌中多个杂质元素测定需求。随着微波消解及高温高压消解设备的发展,有研究人员开展了电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)等方法研究,但是受仪器条件、容器材料及环境条件等限制,硅、钠、钙、镁等元素无法准确测定。

二十世纪发展起来的对固体材料直接进行痕量及超痕量元素分析的辉光放电质谱法(GD-MS)作为火花源质谱(SSMS)替代物,具有灵敏度高且稳定、检出限低、重复性和再现性好、浓度响应范围宽、基体效应小、可一次分析除C、O、H、N外从主含量元素%级至亚ppb级多个元素等优势,已经逐渐成为国际国内高纯金属、高纯合金材料、稀贵金属、溅射靶材杂质分析的重要方法,应用于一些高纯材料Al、Cu、Si、Pb、Ti、In等中的杂质

元素定量分析标准方法,如有美国ASTM标准以及中国国家标准、行业标准等。GD-MS杂质检测结果在国际贸易中得到认可。已有日本发明人基于GD-MS在高纯金属杂质含量测定领域应用的基础上,申请了一种以辉光放电质谱法(GD-MS)分析高纯度钌粉末的试料制作专利方法。故制定相应的高纯钌辉光放电质谱法测定杂质元素含量标准分析方法,对于金属钌的精炼提纯、钌粉原料和钌产品的质量控制有着重要的意义,也可以较好地完善贵金属材料产品检验表征及评价方法技术体系。

1.2 任务来源

贵研铂业股份有限公司于2017年10月向上级主管部门提出制定高纯钌中杂质元素含量的测定方法行业标准计划,2018年9月工业和信息化部以工信厅科[2018]73号文下达该标准的制订任务,标准计划号为2018-2053T-YS。项目起止时间为2019年~2020年。技术归口单位为全国有色金属标准化技术委员会。

1.3 本标准编制单位、起草人及所做工作

本标准主要起草单位为贵研铂业股份有限公司、贵研检测科技(云南)有限公司。主要起草人:马媛、杨晓滔、任传婷、李玉萍、甘建壮、金娅秋、董海刚、李楷中、朱武勋。主要负责本标准的方法制定、资料收集、技术参数的确定及标准条款的编写工作。

本标准参与起草单位包括国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、江西省钨与稀土产品质量监督中心、有研亿金新材料有限公司。参与起草人:胡芳菲、刘红、秦方明、蒋威、高岩,主要负责本标准的验证工作。

1.4 主要工作过程

本标准于2019年4月由中国有色金属工业标准计量质量研究所主持,在浙江省桐乡市召开了任务落实会,根据任务落实会会议精神和17名与会专家的意见,开展了后续工作。在本标准的试验过程中,考虑高纯金属中部分元素含量低于仪器检测限,不能给出具体数值,无法统计重复性限和再现性限,以各单位一起对同一验证试样进行测试的标准偏差为依据,并考虑辉光放电质谱法分析测试误差的共识后协商给出方法的允许差。于2020年7月提交标准稿、编制说明、验证报告、试验报告。2020年8月,由中国有色金属工业标准计量质量研究所主持,在xx省xx市召开了讨论会,共有x个单位的x名代表参加了会议。会上,与会专家首先认真听取了标准起草人介绍编制说明等技术文件,以严谨、科学的态度对本标准进行了认真审查、讨论,提出了中肯的修改意见。标准起草单位认真听取了专家们的意见,采纳了合理的意见使之更加完善。对本标准的主要修改意见如下:略。

二、标准编制原则

本标准是根据GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》和GB/T20001.4-2001《标准编写规则第4部分:化学分析方法》的要求进行编写的。

三、标准主要内容的确定依据

3.1 样品的制备技术

常规样品制备指将棒状或片状金属样品,制备成直径约2mm~3mm、长约22mm的细棒,或厚度约1mm~20 mm、直径约12mm~40mm的片状,保持样品表面光洁和平整,测试前将样品用15mL盐酸和5mL硝酸加热煮沸30分钟,用超纯水煮沸清洗酸残留液,用无水乙醇清洗,吹干。装载在针状或片状样品池上进行样品分析。

粉末样品无法直接装载在针状或片状样品池上,可以采用压片机将粉末压成片状,也可以采用铟粘附法来辅助装载样品:将高纯铟(7N)压成片状,依次使用硝酸、超纯水、无水乙醇来浸泡和清洗,吹干,再将高纯钌粉末置于铟片的中间位置,压实压紧避免粉末脱落,装载在片状样品池上进行样品分析。

3.2 测定技术

将制备好的样品置于样品架上,推入辉光放电室中,将辉光放电离子源溅射条件调节到适当的工作状态开始辉光放电,对棒状或片状金属样品进行预溅射20min,对粉末状金属样品进行预溅射10min,进一步去除表面沾污。调出编辑好的方法,开始收集待测元素的离子信号,在每一处元素质量数处以扫描时间对质谱峰积分,所得面积为谱峰强度,被测元素含量(将单元素基体元素含量近似设为1)可以由下式给出:

C X/M=RSF X/M I X/I M

式中:I X、I M分别是待测元素和基体元素的同位素丰度校正后的离子强度, RSF X/M为相对灵敏度因子。

3.3 分析元素同位素选择及分辨率

分析元素同位素首选同位素丰度高、干扰少的。大多数元素质谱干扰可以在中分辨率4000的条件下分离。此外,放电部分使用低温液氮冷却离子源的方式,在-170℃放电池中可以将气体杂质尽可能地冷却在池壁上,减少其离子碰撞和电离的机会,降低干扰。各测定元素同位素选择见表1。分辨率均在大于4000条件下测定。

表1. 测定元素及同位素

3.4 仪器参数选择

考察了GD-MS测定技术方面的以下主要影响因素:放电气体氩气的流速Gas(mL/min)、放电电流I(mA)、放电电压U(V)等重要仪器工作调试参数。

将仪器参数调节至表2所示的值,用钽片或钽棒对仪器放电条件进行调节,放电气体流量为2.00mA,放电电压在900~1100V之间,分辨率大于4000。钽基体同位素181Ta的信号强度即法拉第电流值达到10-10A以上的峰值。测定电子倍增器与法拉第杯检测器离子计数效率ICE值要大于75%。进行高中低质量峰位置校正。

表2 辉光放电质谱仪主要工作参数

3.5 预溅射时间

在一定的仪器条件下,考察钌粉经粉末冶金热压法制得钌块样品和钌粉直接压片得到片状样品,其预溅射时间对常见易污染元素钠、镁、铝、硅、铁、钙的含量测定影响情况。结果表明,对于片状或棒状金属钌样品,加工过程引入的常见污染元素,经过酸煮腐蚀和超纯水清洗后,仍然需要预溅射至少20min才能进一步去除表面污染;对于粉末状样品,不清洗,预溅射时间10min即可,否则会掉粉导致短路,使电压下降中断测定。

3.6 方法比对

将钌粉压在高纯铟上进行测定,其主要元素GD-MS测定与高温高压消解酸溶样ICP-AES测定方法对比,结果见表3。实验表明,GD-MS具有固体进样、准确度好、分析速度快、检测下限低等优势。

表3 钌样品GD-MS与ICP-AES分析结果

3.7.1 重复性

在同一实验室,由同一操作者使用相同设备,按相同的测试方法,并在短时间内对同一被测对象进行测试获得的三次独立测试结果的极差不超过表4所列允许差。

3.7.2 再现性

在不同的实验室,由不同的操作者使用不同的设备,按相同的测试方法,对同一被测对象进行测试获得的两次独立测试结果的差值不超过表4所列允许差。

表4 允许差

四、标准水平分析

目前并未检索到国内相关国家标准或行业标准。

五、与现行法律、法规、强制性国家标准及相关标准协调配套的情况

本标准完全满足现行法律、法规等的要求,标准格式规范。

六、标准中涉及到的专利

七、重大分歧意见的处理经过和依据

八、标准作为强制性或推荐性国家(或行业)标准的建议

建议该标准作为推荐性行业标准。

九、贯彻标准的要求和措施建议

十、废止现行有关标准的建议

本标准为首次起草,无废止/替代现行有关标准。

十一、其他应予说明的事项

附录

各单位数据的平均值

辉光放电

辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

JJF(有色金属)0003-2020 直流辉光放电质谱仪校准规范-报批稿

JJF(有色金属) 0003─2020 直流辉光放电质谱仪校准规范Calibration Specification for DC Glow Discharge Mass Spectrometers (报批稿) 2020-××-××发布 2020-××-××实施 中华人民共和国工业和信息化部 发布

本规范委托有色金属行业计量技术委员会进行解释 归 口 单 位:中国有色金属工业协会 主要起草单位:国标(北京)检验认证有限公司、国合通用测试评价认证股份公司、包头稀土研究院、西安汉唐分析检测有限公司、甘肃精普检测科技有限公司、贵研铂业股份有限公司、峨嵋山半导体研究所。 JJF (有色金属)0003—2020

本规范主要起草人: 胡芳菲(国标(北京)检验认证有限公司)陈雄飞(国标(北京)检验认证有限公司)刘英(国标(北京)检验认证有限公司)李建亭(包头稀土研究院) 房永强(西安汉唐分析检测有限公司) 邱平(甘肃精普检测科技有限公司) 马媛(贵研铂业股份有限公司) 孙平(峨嵋山半导体研究所) 骆楚欣(西安汉唐分析检测有限公司)

目录 1范围 (1) 2引用文件 (1) 3术语和计量单位 (1) 4概述 (1) 5计量特性 (2) 6校准条件 (3) 7校准项目和校准方法 (4) 8校准结果表达 (5) 9复校时间间隔 (6) 附录A(校准原始记录参考格式) (7) 附录B(校准证书内页参考格式) (10) 附录 C(直流辉光放电质谱仪校准结果不确定度评定) (11)

引言 本规范依据国家计量技术规范JJF 1071—2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》和JJF 1059.1-2012《测量不确定度评定与表示》编制。 本规范为首次发布。

辉光发电质谱仪工作原理

辉光放电质谱法(GDMS) 辉光放电质谱仪是直接分析导电材料中的固态痕量元素的最佳工具,能在一次分析过程中测定基体元素(~100 %)、主体元素(%)、微量元素(ppm)、痕量元素(ppb)和超痕量元素(ppt)。 一、仪器结构及基本原理: 辉光放电(GD)属于低压下气体放电现象,放电产生的大量电子和亚稳态惰性气体原子与样品原子频繁碰撞,使样品得到极大的溅射和电离,是一种有效的原子化和离子化源用于分析。 在辉光放电质谱的离子源中被测样品作为辉光等离子体光源的阴极,在阴极与阳极之间充入惰性气体(一般为氩气),并维持压力为10—1000Pa。在电极两端加500—1500V的高电压时,Ar电离成电子和Ar+,Ar+在电场的作用下加速移向阴极。阴极样品的原子在Ar+的撞击下,以5—15eV的能量从阴极样品上被剥离下来(阴极溅射),进入等离子体,在等离子体中与等离子体中的电子或亚稳态的氩原子碰撞电离,变成正离子:M +e-—M++2e-, M+ Ar* —M++ Ar +e-。已经证实在GD源中碰撞离子化是居于主导地位的电离过程。正离子通过离子源上的小出口进入离子光学系统中进行聚焦,然后进入质量分析器按离子具有不同的质荷比进行分离,最后由离子检测器进行检测。 二、制样方法: 辉光放电质谱仪采用直接取样技术,需测试的导电样品经过简单的机械处理和表面清洁,无需要样品转化为溶液,即可进行元素定量分析,分析样品为平面或针状固体。平面块状固体直径:15~70mm,厚度10um~50mm,针状固体样品长度:20mm,直径:0.5~7mm 1.块砖金属:分析时,块状金属几乎不需要样品制备,仅简单的切割或加 工成适合的形状(如针状或圆盘状),固定于离子源中即可。 2.粉末样品:把待测样品与导体材料混合后,采用特制的压模制成针状或 片状进行分析。 三、用辉光放电质谱仪进行高纯材料分析有以下优点: 1.直接分析固体样品,样品的制备和处理非常简单;而不需要将样品处理成水 溶液进行分析。 2.可进行全元素分析,可分析元素周期表上的70多种元素,从轻元素到重元素 都有极高的灵敏度。 3.元素检出限非常低,对于大多少元素的实际分析能力为10ppt级,完全可以 满足6N或7N以上超纯半导体材料的分析要求。 4.采用很方便的进样杆推进式进样方式,更换样品时不必破坏离子源的真空。

行业标准-《高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法》(编制说明)-预审稿

高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法 编制说明 (预审稿) 国合通用测试评价认证股份公司 2020年4月

高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法 1 工作简况 1.1 方法概况 1.1.1 项目的必要性 锡具有质地柔软,熔点低,展性强,塑性强和无毒等优良特性,主要用于电子、信息、电器、化工、冶金、建材、机械、食品包装、原子能及航天工业等,随着经济的发展,技术的进步,未来锡的应用领域还将不断扩大,新型“无焊料”技术的出现,将为锡金属的应用带来前所未有的好处,其在平板电脑、智能手机等领域的应用都会随其发生变化,另得益于下游行业需求的增长,锡对锂电池领域的阳极碳、不锈钢领域的镀镍、PVC领域的铅的替代作用也将日益增多,需求的增长,对锡纯度的要求也更加严格,对高纯锡的检测技术提出更高的要求。因此建立有效的针对高纯锡纯度检测的手段尤为必要。 1.1.2 适用范围 本标准适用于高纯锡中杂质元素含量的测定。各元素测定范围,见表1: 表1 测定范围 元素测定范围 /ug/kg 元素 测定范围 /ug/kg 元素 测定范围 /ug/kg Li 1~10000 Zn 1~10000 Tb 1~10000 Be 1~10000 Ga 5~10000 Dy 1~10000 B 1~10000 Ge 5~10000 Ho 1~10000 F 5~10000 As 5~10000 Er 1~10000 Na 1~10000 Se 5~10000 Tm 1~10000 Mg 1~10000 Br 5~10000 Yb 1~10000 Al 1~10000 Rb 1~10000 Lu 1~10000 Si 1~10000 Sr 1~10000 Hf 1~10000 P 1~10000 Y 1~10000 Ta 1~10000 S 50~10000 Zr 1~10000 W 1~10000 Cl 50~10000 Nb 1~10000 Re 1~10000 K 1~10000 Mo 1~10000 Os 1~10000 Ca 1~10000 Ru 1~10000 Ir 1~10000 Sc 1~10000 Rh 1~10000 Pt 1~10000 Ti 1~10000 Pd 1~10000 Au 1~10000 V 1~10000 Ag 1~10000 Hg 1~10000 Cr 1~10000 Cd 1~10000 Tl 1~10000 Mn 1~10000 Sn 基体Pb 1~10000 Fe 1~10000 Nd 1~10000 Bi 1~10000 Co 1~10000 Sm 1~10000 Th 1~10000 Ni 1~10000 Eu 1~10000 U 1~10000 Cu 1~10000 Gd 1~10000

第一章原子发射光谱法解读

第一章、原子发射光谱法 一、选择题 1.闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( ) (1) α=β(2) α=θ(3) β=θ(4) α=β=θ 2光栅公式[nλ= b(Sinα+ Sinβ)]中的b值与下列哪种因素有关?( ) (1) 闪耀角(2) 衍射角(3) 谱级(4) 刻痕数(mm-1) 3. 原子发射光谱是由下列哪种跃迁产生的?( ) (1) 辐射能使气态原子外层电子激发(2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发(4) 电热能使气态原子外层电子激发 4. 摄谱法原子光谱定量分析是根据下列哪种关系建立的(I——光强, N基——基态原子数, ?S——分析线对黑度差, c——浓度, I——分析线强度, S——黑度)?( ) (1) I-N基(2) ?S-lg c(3) I-lg c(4) S-lg N基 5. 下述哪种光谱法是基于发射原理?( ) (1) 红外光谱法(2) 荧光光度法(3) 分光光度法(4) 核磁共振波谱法 6. 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( ) (1) K(2) Ca(3) Zn(4) Fe 7. 以光栅作单色器的色散元件,若工艺精度好,光栅上单位距离的刻痕线数越多,则( ) (1) 光栅色散率变大,分辨率增高(2) 光栅色散率变大,分辨率降低 (3) 光栅色散率变小,分辨率降低(4) 光栅色散率变小,分辨率增高 8. 发射光谱定量分析选用的“分析线对”应是这样的一对线( ) (1) 波长不一定接近,但激发电位要相近(2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近(4) 波长和激发电位都不一定接近 9. 以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( ) (1) 光谱色散率变大,分辨率增高(2) 光谱色散率变大,分辨率降低 (3) 光谱色散率变小,分辨率增高(4) 光谱色散率变小,分辨率亦降低 10. 在下列激发光源中,何种光源要求试样制成溶液?( ) (1)火焰(2)交流电弧(3)激光微探针(4)辉光放电 11. 用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( ) (1)钠(2)碳(3)铁(4)硅 12. 基于发射原理的分析方法是( ) (1) 光电比色法(2) 荧光光度法(3) 紫外及可见分光光度法(4) 红外光谱法 13. 发射光谱法用的摄谱仪与原子荧光分光光度计相同的部件是( ) (1)光源(2)原子化器(3)单色器(4)检测器 14. 下面哪些光源要求试样为溶液, 并经喷雾成气溶胶后引入光源激发?( ) (1) 火焰(2) 辉光放电(3) 激光微探针(4) 交流电弧 15. 发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) (1) 直流电弧(2) 低压交流电弧(3) 电火花(4) 高频电感耦合等离子体 16. 电子能级差愈小, 跃迁时发射光子的( ) (1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高 17. 光量子的能量正比于辐射的( ) (1)频率(2)波长(3)传播速度(4)周期 18. 下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?( )

行标《高纯铂化学分析方法 杂质元素含量的测定 辉光放电质谱法》送审稿编制说明

高纯铂化学分析方法杂质元素含量的测定辉光放电质谱法 编制说明 (送审稿) 贵研铂业股份有限公司二〇二〇年九月

高纯铂化学分析方法 杂质元素含量的测定 辉光放电质谱法 一、工作简况 (一)、任务来源 根据2018年9月,工业和信息化部以工信厅科[2018]163号文的要求,行业标准《高纯铂化学分析方法杂质元素含量的测定》制定项目由全国有色金属标准化技术委员会归口,计划编号:2018-0519T-YS,项目周期为24个月,完成年限为2020年10月,标准起草单位为:贵研铂业股份有限公司、贵研检测科技(云南)有限公司。技术归口单位为全国有色金属标准化技术委员会。行业标准项目《高纯铂化学分析方法杂质元素含量的测定》由:贵研铂业股份有限公司、贵研检测科技(云南)有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、有研亿金新材料有限公司、江西省钨与稀土产品质量监督中心负责起草。 技术审查会前,根据标准编制工作任务量,重新调整了编制组构成,具体为:贵研铂业股份有限公司、贵研检测科技(云南)有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、甘肃精普检测科技有限公司、江西省钨与稀土产品质量监督中心、有研亿金新材料有限公司、北京清质分析技术有限公司。(二)、主要参加单位和工作成员及其所做的工作 2.1 主要参加单位情况 标准主编单位贵研铂业股份有限公司和贵研检测科技(云南)有限公司在标准的编制过程中,积极主动收集国内外相关标准,对一些有代表性的涉及高纯铂提纯精炼、加工使用等企业进行调研和征求意见,根据实际情况进行标准编写和试验方案实施。公司能够带领编制组成员单位认真细致修改标准文本,征求多家企业的修改意见,最终带领编制组完成标准的编制工作。 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、甘肃精普检测科技有限公司和江西省钨与稀土产品质量监督中心,积极参加标准调研工作,针对标准的讨论稿和征求意见稿提出修改意见,负责标准中主要试验条件以及精密度、准确度的验证和对标准文本编写把关。 有研亿金新材料有限公司在靶材产品生产中会应用到高纯铂,在标准编制过程中,他们积极配合标准主编单位开展调研工作,并主动提供方法验证样品。 北京清质分析技术有限公司主动要求提供配合标准的第三方试验验证工作,认真为标准的讨论稿和征求意见稿提出修改意见。 2.2 主要工作成员所负责的工作情况 本标准主要起草人及工作职责见表1。 表1 主要起草人及工作职责

各种质谱性能介绍

Trace DSQ II 性能介绍 美国Thermo Fisher Scientific 是世界最大的分析仪器制造公司,也是最专业的质谱生产厂家,总部设在美国波士顿地区,年销售额超过22亿美元,在全球30多个国家设有分支机构,员工人数超过11,000人,工厂主要分布在美国、德国、英国、意大利、法国。 其属下的色谱质谱部前身为著名的质谱生产厂家菲尼根公司(Finnigan ),主要的产品包括了四极杆和离子阱的气相色谱质谱联用仪(DSQ 、PolarisQ ),三维离子阱液质(LCQ ),二维线性离子阱液质(LTQ ),三级四极杆串接液质(TSQ Quantumn )等单位质量分辩率台式质谱仪,以及高分辨磁质谱(MAT95),傅立叶变换离子回旋共振质谱(FTMS ),静电场轨道离子阱质谱(Orbitrap ),电感耦合等离子体高分辨质谱,辉光放电质谱(GD MS ),同位素质谱等多种高分辨质谱仪,总计有近30种质谱设备,为目前最大和最专业的质谱供应厂商。 秉承30多年来在气相色谱/质谱中的领先优势,Thermo Fisher Scientific 推出了DSQ II 四极杆质谱仪,其革新技术从根本上改善了分析结果,也预示着痕量分析技术的未来。 DSQ II 配备了最新的DuraBrite 离子源和DynaMax XR 检测系统,配合成名已久的弯曲预四极杆技术,DSQ II 不仅保证了拥有超高的灵敏度,而且也极大的提高了离子源的抗污染能力。同时根据不同行业标准操作规程的要求,推出了最新的EnviroLab 、ToxLab 、QuanLab 等常规应用软件,在维持Xcalibur 质谱软件强大功能的同时,使得任何化学工作者在分析大批量样品的时候可以轻松进行数据处理,节省了大量时间。可以说,DSQ II 是目前业界灵敏度最高,定量检测线性范围最宽的质谱仪。 Trace DSQ II GC/MS 是Thermo Fisher Scientific 的一款新型台式四极杆气质联用仪,应用新一代弯曲光学透镜排除中性粒子的噪音。排除这部分背景使得化学工作者能够在TRACE DSQ 系统的整个动态范围内大大改善检测限、定量和谱图性能。特别对于某些应用领域,如对于地表水、饮用水中的挥发性有机物、农残检测等,由于排除了系统的噪音,减小了基体的干扰,从而在不牺牲动态范围和谱图的特征性的情况下,极大增强了GCMS 的检测灵敏度。 Trace DSQ II GC/MS 采用了目前扫描速度高达11,000 amu/s 的全金属钼四极杆设计,提供最大信息量的质谱数据,因此一次进样即能同时获取真正的全扫描(Scan )和选择离子(SIM)检测结果,同时完成了定性和定量的分析,或者同时完成脉冲正负化学源(PPINICI),成倍地提高了工作效率。 Trace DSQ II GC/MS 使用技术领先的Xcalibur 仪器控制和数据处理软件,其可扩展的XDK (Xcalibur Development

原子光谱分析的进展及应用

原子发射光谱分析进展及应用 一、进祥系统 G.E.BaMescu认为,在一个样品的整个分析过程中,取样和进样部分应占40%,测量占20%,而数据采集和数据处理占40%。取样和进样系统的可靠性代表着分析化学家技术水平的高低。 近年来,电热蒸发技术(ETV)与流动注射技术(n)的应用,使电感锅台等离子体光谱(ICP)与微波等离子体(MIP)的进样系统有较大改进。提高了分析的灵敏度,简化了分析过程。 (1)电热蒸发技术 电热蒸发技术目前已成为ICP的一种较通用的进样系统,适合于固体粉末样品的直接分析和微量液体样品的分析。电热蒸发系统代替气动雾化器作为ICP的进样系统,使样品的传输效率提高,检出限降低1—2个数量级。 固体粉末样品可用500一700微升的样品杯来代替称重,液体样品的取样量为微升。将样品置于石墨桥上,石墨桥密闭后与ICP炬管直接相通,通大电流加热,最高温度可达2900K,使样品完全蒸发和原子化后进1CP炬管。固体样品的常规化学处理耗时长、空白高、灵敏度低,田由执兹常林术育按讲行固体粉末样品的分析可以克服以上缺点。G011nch等曾用以上ETV—ICP系统进行了多元素同时测定,分析了合金钢、碳化硅、淤泥、土壤以及灰中的痕量元素,基体干扰通过选择蒸发时间来消除。测量的相对标准偏差(RSD)为3—11%,动态线性范围为104一105,用不同标样制作同一个分析元素的工作曲线,线性很好。 电热蒸发技术的最大问题是Iv—VI族元素以及稀土元素(REE)和碳形成难熔的碳化物,很难蒸发,从而使这些元素的信噪比低、记忆效应较严重。江祖成等人用聚四氟乙烯(PTFE)作氟化剂,使Ⅳ—Ⅵ族及稀土元素分析的检出限降低了1—2个数量级,并且基体效应减小,固体样品的颗粒效应也明显减小,允许进行直接固体粉末样品分析的颗粒尺寸增大了15倍。他们使用该氟化剂,用ETV—ICP系统分析了生物样品中的Cr、B、Mo、V和REE。 (2)流动注射进样系统 流动注射技术作为一种高效率的液体样品的分离和富集技术c41,近年来用于作ICP和MIP的进样系统,显示了它的优越性:样品传输效率高;所需的溶液样品量少,一般仅为30一300微升;此外,可以分析高盐分样品溶液,即使注入含盐量为40%的样品溶液,也不会堵塞雾化器。 用FI—ICP在线分析钢铁中硼元素时,流动注射系统有效地消除了基体铁对硼灵敏线的光谱干扰。当样品溶液经过用732阳离子树脂填充的交换校时,铁离子留在了阳离子交换柱中,而含硼的样品溶液直接进入ICP被测定。 金钦汉等人,将流动注射技术应用于作微波等离子炬(MPT)的样品在线宫集系统,降低了MPT的检出限,减小了基体效应。首先,蠕动泵使样品溶液通过离子交换柱,分离基体,待测元素的溶液被富集后,经过雾化器进入MPT。当用硫代树脂填充交换柱,1mol/L的盐酸作淋洗液时,Cd、Cu、Mn和Zn的检出限可分别为3.6,2.2,3.1和1.8ng/m1。该方法能有效地消除易电离元素(EIEs)对测定的影响。 但是,流动注射作为ICP的进样系统有二个问题需要注意。第一,流动注射离子交换柱所用的淋洗液不能是有机溶液,国为有机溶液容易引起ICP的等离子体焰熄弧。第二,FI—ICP所产生的测量信号为短信号,而大多数商售的ICP测量系统在设计时末考虑测量短信号的问题。黄本立、王小如等人用活性碳作吸附剂,硝酸作淋洗液,并开发了测量短信号的测量软件,用FI—ICP进行了雨水、海水等样品中的多元素同时测定,预富集可达4—87倍,RSD为l一3%,检出限为0.01一0.1ng/ml。为了减小氢硼化钠对测量的影响,他们又在流动注射的系统中采用了一个薄层流动氢化物发生器。分析As、Se和Sb的检出限可分别为0.63,2.41和0.20ng/m1。

质谱仪原理

王俊朋6 我的主页帐号设置退出儒生一级|消息私信通知|我的百科我的贡献草稿箱我的任务为我推荐|百度首页新闻网页贴吧知道音乐图片视频地图百科文库 帮助首页自然文化地理历史生活社会艺术人物经济科技体育图片数字博物馆核心用户百科商城秦始皇兵马俑博物馆 质谱仪 求助编辑百科名片 CHY-2质谱仪质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 目录 质谱仪原理 质谱仪简介 用法 有机质谱仪 无机质谱仪 同位素质谱仪 离子探针 编辑本段质谱仪原理质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。 原理公式:q/m=2v/B2r2 编辑本段质谱仪简介 质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 编辑本段用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。 质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由

06第六章 原子发射光谱法

原子发射光谱法自测题 一、选择题 ( 每题2分,共13题 26分 ) 1、矿物中微量Ag、Cu的发射光谱定性分析应采用的光源是( ) A、 CP光源 B、直流电弧光源 C、低压交流电弧光源 D、高压火花光源 2、测量光谱线的黑度可以用( ) A、比色计 B、比长计 C、测微光度计 D、摄谱仪 3、下面哪些光源要求试样为溶液,并经喷雾成气溶胶后引入光源激发?( ) A、火焰 B、辉光放电 C、激光微探针 D、交流电弧 4、当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( ) A、K B、Ca C、Zn D、Fe 5、用发射光谱法测定某材料中的Cu 元素时,得铜的某谱线的黑度值(以毫米标尺表示)为S(Cu) = 612,而铁的某谱线的黑度值S(Fe) = 609,此时谱线反衬度是2.0,由此可知该分析线对的强度比是( ) A、31.6 B、1.01 C、500 D、25.4 6、下面几种常用的激发光源中,激发温度最高的是( ) A、直流电弧 B、交流电弧 C、电火花 D、高频电感耦合等离子体 7、用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( ) A、钠 B、碳 C、铁 D、硅 8、以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( ) A、光谱色散率变大,分辨率增高 B、光谱色散率变大,分辨率降低 C、光谱色散率变小,分辨率增高 D、光谱色散率变小,分辨率亦降低 9、分析线和内标线符合均称线对的元素应该是( ) A、波长接近 B、挥发率相近 C、激发温度相同 D、激发电位和电离电位相近 10、在原子发射光谱摄谱法定性分析时采用哈特曼光阑是为了( ) A、控制谱带高度 B、同时摄下三条铁光谱作波长参比 C、防止板移时谱线产生位移 D、控制谱线宽度 11、用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明( ) A、惰延量大 B、展度大 C、反衬度大 D、反衬度小 12、下列哪个因素对棱镜摄谱仪与光栅摄谱仪的色散率均有影响?( ) A、材料本身的色散率 B、光轴与感光板之间的夹角 C、暗箱物镜的焦距 D、光线的入射角 13、下列哪种仪器可用于合金的定性、半定量全分析测定( ) A、极谱仪 B、折光仪 C、原子发射光谱仪 D、红外光谱仪 E、电子显微镜 二、填空题 ( 共12题 24分 ) 14、在发射光谱定性分析中,在拍摄铁光谱和试样光谱时,用移动________来代替移动感光板,其目的是_____________________________________________________。 15、你的实验中所用的发射光谱的摄谱仪的色散元件是____________________,检测器是

材料研究方法

1.材料的结构层次有哪些?采用何种研究方法来表征? 宏观结构,显微结构,亚显微结构,微观结构。用显微术来表征。 2.材料的研究方法如何分类? 图像分析法:以显微术为主体 非图像分析法:包括成分谱分析和衍射法两种 1.电子与固体物质相互作用可以产生哪些物理信号,各有什么特点? 背散射电子:能量较高,但背散射像的分辨率较低。 二次电子:能量较低 吸收电子:入射电子进入样品后,经过多次非弹性散射能量耗光,最后被样品吸收。 透射电子:含有能量与入射电子相当的弹性散射电子,还有各种不同能量损失的非弹性散射电子。 特征X射线:用X射线探测器测到样品微区中存在一种特征波长,就可以判断这个微区存在相应的元素。 俄歇电子:俄歇电子能量各有特征值,能量较低。 2.如何提高显微镜的分辨本领?电磁透镜的分辨本领受哪些条件限制? 比可见光波长更短的照明源、增大加速电压、电子透镜。 球差、像散、色差 3.透射电子显微镜的成像原理是什么? 电子作为照明束,电磁透镜聚焦成像。一束电子束受到薄膜样品的散射作用,将形成各级衍射谱,样品的信息通过衍射谱呈现出来。各级衍射波通过干涉作用重新在像平面上形成反应样品特征的像。 4.透射电镜样品的制样方法有哪些? 直接样品:超细粉末颗粒:支持膜法 材料薄膜:晶体薄膜法、超薄切片法 间接样品:复型膜:将材料表面或断口形貌复制下来。 5.透射图像衬度的概念?TEM主要图像衬度? 指试样不同部位由于对入射电子作用不同,经成像放大系统后,在显示装置上显示的强度差异,即图像上的明暗差异。 质厚衬度、衍射衬度、相位差衬度 6.透射电镜的结构? 电子光学系统(镜筒)、电源系统、真空系统、操作系统

讨论稿试验报告-高纯钯化学分析方法 杂质元素含量的测定 辉光放电质谱法

高纯钯化学分析方法杂质元素含量的测定辉光放电质谱法 试验报告 (预审稿) 贵研铂业股份有限公司 2020年7月

高纯钯化学分析方法 杂质元素含量的测定 辉光放电质谱法 前言 高纯钯以其独特的物理化学性能,应用于现代工业和尖端技术领域。高纯钯提纯技术、加工制造技术与其分析检测能力密切相关,研究高纯钯中杂质元素含量检测方法非常重要。 已有的纯金属钯中杂质测定方法有发射光谱法(AES)[1]、电感耦合等离子体原子发射光谱法(ICP-AES)[2-5]、电感耦合等离子体质谱法(ICP-MS)[6-9]等。产品标准GB/T 1420-2015海绵钯,要求测定三个牌号SM-Pd99.9、SM-Pd99.95、SM-Pd99.99的18个杂质元素,测定方法其一采用《YS/T 362-2006 纯钯中杂质元素的发射光谱分析》,其二采用《附录A 电感耦合等离子体原子发射光谱法》。其中直流电弧发射光谱法需要用钯基体配制粉末标样,不但需要消耗大量的钯基体且钯基体制备方法困难,目前此方法已很少被使用。液体进样检测的ICP-AES法满足不了高纯钯所需检测下限范围。ICP-MS法检测限较低,但对试剂、环境要求较高,易被污染,同时基体浓度也不宜太高。辉光放电质谱法(GD-MS)是20世纪后期发展起来的一种重要无机质谱分析技术,作为目前被公认对固体材料直接进行痕量及超痕量元素分析最有效的分析手段之一[10-12],GD-MS的应用主要在于高纯度材料的杂质元素分析,已成为国际上高纯金属材料、高纯合金材料、稀贵金属、溅射靶材等材料中杂质分析的重要方法。制定高纯钯辉光放电质谱法测定杂质元素含量标准分析方法,有助于进一步完善贵金属材料产品检验表征及评价方法技术体系。 GD-MS的方法原理是将高纯试样安装到仪器样品室中作为阴极进行辉光放电,其表面原子被惰性气体(例如:高纯氩气)在高压下产生的离子撞击发生溅射,溅射产生的原子被离子化后,离子束通过电场加速进入质谱仪进行测定。在每一待测元素选择的同位素质量处以预设的扫描点数和积分时间对应谱峰积分,所得面积为谱峰强度。根据强度比与浓度比的关系计算得到被测元素含量。 试验研究通过调节仪器参数,确定最佳工作条件。对基质元素及共存元素质谱干扰进行分析讨论,GD-MS法测定高纯钯中七十种杂质元素含量,测定其中杂质元素含量在1×10-5%(0.1μg/g)以上的结果,其相对标准偏差(n=7)小于 20%。大多数元素分析检测限在0.001~0.005μg/g。 1 实验部分 1.1 主要仪器与材料 ASTRUM型辉光放电质谱仪(英国NU仪器公司);高纯钽片和钽棒(ωTa≥99.99%);高纯铟(ωIn≥99.99999%);硝酸(优级纯);盐酸(优级纯);无水乙醇(优级纯);超纯水(电阻率为18.25MΩ·cm);高纯氩气(体积分数大于99.995%);液氮(-170℃)。 1.2 仪器工作条件 用钽片或钽棒对仪器放电条件进行调节,将仪器参数调节至表1所示的值,放电电流为2.00mA,放电电压在900~1100V之间。钽基体同位素181Ta的信号强度即法拉第电流值达到10-10A(电子计数值109cps)以上,分辨率大于4000。测定电子倍增器与法拉第杯检测器离子计数效率ICE值必须大于75%。并进行质量峰位置校正。

辉光放电质谱应用概况

辉光放电质谱应用概况 摘要:辉光放电质谱法(GDMS)作为一种固体样品直接分析技术,已广泛应用于金属、导体、半导体,气体、深度等材料的痕量和超痕量杂质分析。近年来,随着制样方法和离子源装置的改进,GDMS同样也能很好地应用于玻璃、陶瓷、氧化物粉末等非导体材料的成分分析。本文主要对其进行分类概述。 关键词:辉光放电质谱应用 辉光放电质谱法(GDMS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。由于其可以直接固体进样,近20 年来已广泛应用于高纯金属、合金等材料的分析。GDMS不仅具有优越的检测限和宽动态线性范围的优点[1-2],而且样品制备简单、元素间灵敏度差异小、基体效应低[3]。自VG Isotopes公司(现名Thermo Electron)在上世纪八十年代推出了其VG 9000型辉光放电质谱分析仪以来[4],大大促进了该技术迅速发展,相关的报道倍增[5]。GDMS 以其优越的分析性能在电子学、化学、冶金、地质以及材料科学等领域里得到广泛应用,在高纯金属和半导体材料分析中已经显示出它的优越性[6-10],对它在绝缘体、粉末、液体、有机物和生物材料分析以及负离子测定中的应用也在积极进行研究和完善,发展前景十分广阔。 1 基本原理 辉光放电(GD)属于低压下气体放电现象,历史上就作为一种有效的原子化和离子化源用于分析。如图1所示,在辉光放电质谱的离子源中被测样品作为辉光等离子体光源的阴极,在阴极与阳极之间充入惰性气体(一般为氩气),并维持压力为10~1 000 Pa。在电极两端加500~1 500 V的高电压时,Ar电离成电子和Ar+,Ar+在电场的作用下加速移向阴极。阴极样品的原子在氩离子的撞击下,以5~15 eV的能量从阴极样品上被剥离下来(阴极溅射),进入等到离子体,在等离子体中与等离子体中的电子或亚稳态的Ar原子碰撞(Penning)电离,变成正离子:M+e-→M++2 e-,M+Ar*一M++Ar+ e-。已经证实在GD源中Penning离子化是居于主导地位的电离过程[11]。 2 应用 2.1 半导体分析 半导体材料的杂质分析也是GDMS一个重要的应用领域,具有很大的商业价值。半导体材料中浓度极低的杂质元素就决定了其电学性质,但半导体的材料性质及杂质元素的含量水平不是一般分析方法所能胜任的。GDMS所具有的特点使其已成为高纯半导体材料乃至半导体工业材料必不可少的分析手段,如表1所示。Beeker等使用RF—GDMS测定GaAs中的10个元素,并与其它质谱方法SSMS、SIMS

第六章、辉光放电(Glow discharge)

第六章、辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

化学分析英文缩写列表

化学分析英文缩写列表 A AAS 原子吸收光谱法 AES 原子发射光谱法 AFS 原子荧光光谱法 ASV 阳极溶出伏安法 ATR 衰减全反射法 AUES 俄歇电子能谱法 C CEP 毛细管电泳法 CGC 毛细管气相色谱法 CIMS 化学电离质谱法 CIP 毛细管等速电泳法 CLC 毛细管液相色谱法 CSFC 毛细管超临界流体色谱法CSFE 毛细管超临界流体萃取法CSV 阴极溶出伏安法 CZEP 毛细管区带电泳法 D DDTA 导数差热分析法 DIA 注入量焓测定法 DPASV 差示脉冲阳极溶出伏安法DPCSV 差示脉冲阴极溶出伏安法DPP 差示脉冲极谱法 DPSV 差示脉冲溶出伏安法 DPV A 差示脉冲伏安法 DSC 差示扫描量热法 DTA 差热分析法 DTG 差热重量分析法 E EAAS 电热或石墨炉原子吸收光谱法ETA 酶免疫测定法 EIMS 电子碰撞质谱法 ELISA 酶标记免疫吸附测定法EMAP 电子显微放射自显影法EMIT 酶发大免疫测定法 EPMA 电子探针X射线微量分析法ESCA 化学分析用电子能谱学法ESP 萃取分光光度法 F FAAS 火焰原子吸收光谱法FABMS 快速原子轰击质谱法 FAES 火焰原子发射光谱法

FDMS 场解析质谱法 FIA 流动注射分析法 FIMS 场电离质谱法 FNAA 快中心活化分析法 FT-IR 傅里叶变换红外光谱法 FT-NMR 傅里叶变换核磁共振谱法 FT-MS 傅里叶变换质谱法 GC 气相色谱法 GC-IR 气相色谱-红外光谱法 GC-MS 气相色谱-质谱法 GD-AAS 辉光放电原子吸收光谱法 GD-AES 辉光放电原子发射光谱法 GD-MS 辉光放电质谱法 GFC 凝胶过滤色谱法 GLC 气相色谱法 GLC-MS 气相色谱-质谱法 H HAAS 氢化物发生原子吸收光谱法HAES 氢化物发生原子发射光谱法HPLC 高效液相色谱法 HPTLC 高效薄层色谱法 I IBSCA 离子束光谱化学分析法 IC 离子色谱法 ICP 电感耦合等离子体 ICP-AAS 电感耦合等离子体原子吸收光谱法ICP-AES 电感耦合等离子体原子发射光谱法ICP-MS 电感耦合等离子体质谱法 IDA 同位素稀释分析法 IDMS 同位素稀释质谱法 IEC 离子交换色谱法 INAA 仪器中子活化分析法 IPC 离子对色谱法 IR 红外光谱法 ISE 离子选择电极法 ISFET 离子选择场效应晶体管 L LAMMA 激光微探针质谱分析法 LC 液相色谱法 LC-MS 液相色谱-质谱法 M MECC 胶束动电毛细管色谱法 MEKC 胶束动电色谱法 MIP-AAS 微波感应等离子体原子吸收光谱法

JJF(有色金属)xxx-2020 双联电解分析仪校准规范-送审稿编制说明

JJF(有色金属)006—20XX 双联电解分析仪校准规范 (编制说明) 送审稿 2020-05-22 双联电解分析仪校准规范编制组 主编单位:国标(北京)检验认证有限公司

一、工作简况 1 立项目的 双联电解分析仪是运用电解法来分析有色金属的成套装置。电解分析法是建立在电解基础上通过称量沉积于电极表面的沉积物重量以测定溶液中被测离子含量的电化学分析法。电解是在电解池中进行的,外加电源的正极和负极分别与电解池的阳、阴极相连。在电解过程中,在阳极上发生氧化反应,在阴极上发生还原反应。当实际施加于两极的电压大于理论分解电压、超电压和电解回路的电压降之和,就能使电解过程持续稳定地进行,被测金属离子以一定组成的金属状态在阴极析出,或以一定组成的氧化物形态在阳极析出。该仪器选用适当的电解溶液及电流强度或分解电压可以分析铜,铅,镍,锡等元素,达到精密的定量分析目的,精确度 2.5级。该检测仪器的优点是既简化了分析程序,又同时排除了元素间的相互干扰。 然而我国的双联电解分析仪设备还处于初步发展阶段,设备的制造研发并不成熟,产品质量参差不齐,这与缺乏双联电解分析仪的校准规程有关,由于缺乏对设备的评价依据,导致产品的验收和维护校准处于灰色地带,对行业的发展造成了不利的影响。科学的校准规范能规范校准操作并确保校准结果的准确性,便于该仪器的广泛推广应用,从而提升产品质量水平,并对有色金属产业发展起到积极推动的作用。 2 任务来源 为保证和提升我国有色金属行业电解法分析试验数据的准确性,工业和信息化部办公厅于2018年6月20日下达了《工业和信息化部办公厅关于印发2018年行业计量技术规范制修订计划的通知》(工信厅科函[2018]210号),其中包括《双联电解分析仪校准规范》制订计划项目。该项目计划号为JJFZ (有色金属)006-2018,国标(北京)检验认证有限公司为主要起草单位,计划完成年限为2020年。 3 项目编制组单位简况 3.1 编制组成员单位 本标准的编制组单位为:国标(北京)检验认证有限公司、国合通用测试评价认证股份公司、广东省工业分析检测中心、中铝洛阳铜业检测技术有限公司、中铝郑州有色金属研究院有限公司、西安汉唐分析检测有限公司。编制组成员单位均是我国有色金属行业内主要从事计量、分析检测及科研的权威单位。 3.2 主编单位简介 3.2.1 国标(北京)检验认证有限公司 国标(北京)检验认证有限公司(以下简称“国标检验”)是中央企业有研科技集团有限公司(原北京有色金属研究总院)下属国合通用测试评价认证股份公司的全资子公司,注册资本4680.00万元。国标检验是中国有色金属和电子材料方面权威的第三方检验认证服务机构,管理运营着国家有色金属

化学分析英文缩写列表.(精选)

化学分析英文缩写列表 AAS 原子吸收光谱法 AES 原子发射光谱法 AFS 原子荧光光谱法 ASV 阳极溶出伏安法 ATR 衰减全反射法 AUES 俄歇电子能谱法 CEP 毛细管电泳法 CGC 毛细管气相色谱法 CIMS 化学电离质谱法 CIP 毛细管等速电泳法 CLC 毛细管液相色谱法 CSFC 毛细管超临界流体色谱法CSFE 毛细管超临界流体萃取法CSV 阴极溶出伏安法 CZEP 毛细管区带电泳法 DDTA 导数差热分析法 DIA 注进量焓测定法 DPASV 差示脉冲阳极溶出伏安法DPCSV 差示脉冲阴极溶出伏安法DPP 差示脉冲极谱法 DPSV 差示脉冲溶出伏安法 DPVA 差示脉冲伏安法 DSC 差示扫描量热法 DTA 差热分析法 DTG 差热重量分析法 EAAS 电热或石墨炉原子吸收光谱法ETA 酶免疫测定法 EIMS 电子碰撞质谱法 ELISA 酶标记免疫吸附测定法EMAP 电子显微放射自显影法 EMIT 酶发大免疫测定法 EPMA 电子探针X射线微量分析法ESCA 化学分析用电子能谱学法ESP 萃取分光光度法 FAAS 火焰原子吸收光谱法 FABMS 快速原子轰击质谱法 FAES 火焰原子发射光谱法 FDMS 场解析质谱法 FIA 活动注射分析法 FIMS 场电离质谱法 FNAA 快中心活化分析法 FT-IR 傅里叶变换红外光谱法 FT-NMR 傅里叶变换核磁共振谱法FT-MS 傅里叶变换质谱法 GC 气相色谱法 GC-IR 气相色谱-红外光谱法 GC-MS 气相色谱-质谱法 GD-AAS 辉光放电原子吸收光谱法GD-AES 辉光放电原子发射光谱法GD-MS 辉光放电质谱法 GFC 凝胶过滤色谱法 GLC 气相色谱法 GLC-MS 气相色谱-质谱法 HAAS 氢化物发生原子吸收光谱法HAES 氢化物发生原子发射光谱法HPLC 高效液相色谱法 HPTLC 高效薄层色谱法 IBSCA 离子束光谱化学分析法 IC 离子色谱法 ICP 电感耦合等离子体 ICP-AAS 电感耦合等离子体原子吸收光谱法ICP-AES 电感耦合等离子体原子发射光谱法ICP-MS 电感耦合等离子体质谱法 IDA 同位素稀释分析法 IDMS 同位素稀释质谱法 IEC 离子交换色谱法 INAA 仪器中子活化分析法 IPC 离子对色谱法 IR 红外光谱法 ISE 离子选择电极法 ISFET 离子选择场效应晶体管LAMMA 激光微探针质谱分析法 LC 液相色谱法 LC-MS 液相色谱-质谱法 MECC 胶束动电毛细管色谱法 MEKC 胶束动电色谱法 MIP-AAS 微波感应等离子体原子吸收光谱法MIP-AES 微波感应等离子体原子发射光谱法MS 质谱法 NAA 中子活化法 NIRS 近红外光谱法 NMR 核磁共振波谱法 PAS 光声光谱法 PC 纸色谱法 PCE 纸色谱电泳法 PE 纸电泳法 PGC 热解气相色谱法 PIGE 粒子激发Gamma射线发射光谱法 PIXE 粒子激发X射线发射光谱法RHPLC 反相高效液相色谱法RHPTLC 反相液相薄层色谱法 RIA 发射免疫分析法 RPLC 反相液相色谱法 SEM 扫描电子显微镜法 SFC 超临界流体色谱法 SFE 超临界流体萃取法 SIMS 次级离子质谱法 SIQMS 次级离子四极质谱法 SP 分光光度法 SP(M)E 固相(微)萃取法 STM 扫描隧道电子显微镜法 STEM 扫描投射电子显微镜法 SV 溶出伏安法 TEM 投射电子显微镜法 TGA 热重量分析法 TGC 薄层凝胶色谱法 TLC 薄层色谱法 UPS 紫外光电子光谱法 UVF 紫外荧光光谱法

相关文档
相关文档 最新文档