文档库 最新最全的文档下载
当前位置:文档库 › 汽油辛烷值添加剂项目建议书

汽油辛烷值添加剂项目建议书

汽油辛烷值添加剂项目建议书
汽油辛烷值添加剂项目建议书

TKC技术方案及应用

建议书

高原国际能源开发有限公司

二零零五年五月

一、汽油辛烷值添加剂的发展及使用

众所周知,为了解决汽油在发动机中的爆震燃烧问题首先要提高汽油的辛烷值,通过炼化装置或使用辛烷值添加剂是两大基本途径。油品的辛烷值不仅是车用汽油最重要的质量指标,它也综合反映一个国家炼油工业水平和车辆设计水平。依靠改进工艺,引进催化重整、烷基化、异构化等装置是解决汽油升级,实现无铅化和不断提高汽油环境指标的根本出路。但对于炼油水平并不高的发展中国家而言,这无疑需要大量的投资和相当长的建设期。多数国家刚刚淘汰了含铅汽油,就马上面临实行欧洲3号以至4号汽油标准的要求,采用抗爆剂无疑成为发展中国家提高车用汽油辛烷值的重要手段之一。

综合各国曾经和正在使用的抗爆剂,大体有烷基铅、甲基环戊二烯三羰基锰(MMT)、甲基叔丁基醚(MTBE)、甲基叔戊基醚、叔丁醇、甲醇、乙醇等。

1、四乙基铅(TEL)

美国人查尔斯.凯特林(Charles Kettering)是CFC的发明人,他在1921年发现将四乙基铅(TEL)加入汽油中能减少汽油发动机的"爆震" 现象。1923年他与通用汽车成立了合资公司开始推广其在车用汽油中使用。直至1959年之前,四乙基铅是被人们唯一使用的辛烷值改进剂。1960年四甲基铅进入抗爆剂市场,催化重整工艺的采用和发展使其使用量迅速增加。目前四甲基铅、四乙基铅及其化学混合物和物理混合物仍作为重要抗爆剂在某些地区广泛应用。烷基铅抗爆剂具有工艺简单、成本低廉、效果突出的优势,所以一直是效率很高的辛烷值改进剂。从使用性能与经济效果来看,目前还没有一种比得上烷基铅的抗爆剂。

随着汽车废气排放控制及保护环境的需要,国际多数国家已经禁止向汽油内加烷基铅。美国、加拿大、澳大利亚以及西欧等国汽油无铅化推行较快,上世纪90年代左右已基本实现汽油无铅化,中国已于2000年淘汰了含铅汽油,而其它发展中国家汽油亦正向低铅化发展。

2、甲基环戊二烯三羰基锰(MMT)、环戊二烯三羰基锰(CMT)

美国乙基公司(Ethyl Corporation)1959年向市场推出了甲基环戊二烯三羰基锰(MMT),开始把它作为四乙基铅辅助抗爆剂,后来则作为单独抗爆剂使用。此后,美国乙基公司在MMT基础上开发了环戊二烯三羰基锰(CMT)。MMT可以有效地提高了汽油辛烷值,但随储存时间延长尤其是见光后,调配油的辛烷值很快又恢复到基础油水平。CMT的效果稍好一些,但其提高辛烷值的幅度比MMT明显降低。另有研究认为,使用MMT、CMT会在发动机燃烧室内表面形成多孔性沉积物,使火花塞寿命缩短。而更为严重的是,金属锰和铅、汞一样被列为毒害金属,MMT的大量使用也将造成环境中锰含量上升。为此,美国已于1978年在全国全面禁止使用MMT。乙基公司自1996年开始在中国推广MMT的应用,但由于其本身的毒性及对汽车三元催化转化器的影响,中国石油化工总公司曾于1998年发文要求暂不要在汽油中添加

MMT。

3、甲基叔丁基醚(MTBE)

MTBE作为汽油添加剂已经在全世界范围内普遍使用。它能提高汽油的氧含量,使其燃烧更完全。因此可减少向大气中排放燃烧的副产品,比如臭氧和一氧化碳。但美国研究人员通过调查发现MTBE对饮用水的污染远比想象得更加严重。并且,这种化合物残留在井下可形成持久的危害,即使禁止使用MTBE后的很长一段时间内,它仍将残留在水源里继续造成污染。

美国许多大城市以及整个加利福尼亚州,从20世纪90年代中期起为了减少大气污染,在汽油里添加了MTBE。尽管这一措施减少了空气污染,但是存储过程中泄漏出的MTBE已对地下水造成了污染。有些水库也被船只和滑水艇漏出的汽油污染。MTBE可在大鼠身上诱发癌症,但它对人类健康的影响仍不清楚。所以,美国环保局也未对该添加剂采取系统的管理。但是,低浓度的MTBE就可给水带来不愉快的味道和气味,使其无法饮用。美国地质勘探局南达科他州分部领导的一个水质量调查小组检测了全美各城市及其附近的482口水井,其中的13%测到MTBE的含量。地质勘探局康涅狄格州分部汇总了美国东北部和临中大西洋的10个州的不同社区的16717个水样的记录,发现其中9%含有MTBE。这两项研究还发现有2%的水源中MTBE浓度超过了美国环保局规定的含量应低于一亿分之二的标准。即使水井中MTBE浓度远低于标准时,人们已经在强烈要求除去水中的MTBE,因为它使水有难喝的味道。

更令人担心的是,加利福尼亚的两个研究小组发现在土壤和蓄水层中自然过程似乎无法降解MTBE。劳伦斯利弗莫尔(The Lawrence Livermore National Laboratory)国家实验室的环境学家安娜·哈帕尔(Anne Happel)和加州大学戴维斯分校的水文学家格拉哈姆·佛歌(Graham Fogg)分别领导的小组研究表明,MTBE污染的地下水可以在十年间渗透几百米而基本上不降解,比危险碳氢化合物比如苯的降解时间还要长得多。

目前阿拉斯加州和缅因州已禁止使用MTBE,加利福尼亚州也将在短时间内逐步取缔该添加剂。而眼下我国国内却在大量使用这一添加剂,显然美国的情况值得引起我们的重视。

4、其它醚类

一些其他醚类如甲基叔戊基醚(TAME)和乙基叔丁基醚(ETBE)也可用于调和汽油。由于ETBE的蒸汽压低,因此它比MTBE更容易调和,但是其含氧量低,要达到相同的汽油含氧量标准,所需调入量要高于MTBE。据美国《油气杂志》统计,现有的ETBE生产能力比MTBE要小得多,供应能力不足。另外,除非ETBE装置能达到目前MTBE装置的生产规模,否则其生产成本要远高于MTBE。TAME的情况也比较相似。由于它们与MTBE化学结构相似,人们也会关注这些醚类是否会造成类似于MTBE的环境问题。因此在加利福尼亚州空气资源委员会(CARB)第三阶段规格中

规定:在确定使用这些醚类对公众健康和环境不产生负面影响之前,不允许使用TAME 或ETBE。另外,有了MTBE的教训,消费者也不会轻易认可类似于MTBE的其他石化衍生的含氧化合物。因此,炼油厂难以把这些醚类看作可行的MTBE替代物。

5、醇类

叔丁基醇(TBA)和乙醇是目前使用的用于满足RFG含氧量要求的两种醇类化合物,同TAME和ETBE一样,TBA的数量有限,且对其毒性不大了解。因此,用TBA替代MTBE也很难可行。

乙醇是很有希望成为替代MTBE的含氧化合物,然而,对使用它的经济性和燃烧性面临的困难仍存在争议。第一个问题是成本。根据国外的资料介绍,美国乙醇的生产成本超过335美元/t,零售价格约为369美元/t,远高于汽油平均价格的235美元/t。上述价差由国家扶持、政府补贴及税收优惠等政策措施来弥补。如果没有这些优惠政策的支持,采用当前技术生产的乙醇由于生产成本高,很难推广应用。因此有效地降低生产成本非常重要。第二个是储运问题。乙醇汽油遇水分层,影响其使用,因此无法采用成本低廉的管道输送。在乙醇汽油的实际使用上,对汽车发动机的性能提出新要求。据资料显示,使用乙醇汽油后,汽车的油耗有所增加,发动机的动力性能有不同程度的下降。乙醇汽油对汽车油箱、化油器等部件的有色金属、橡胶材料会产生不同程度的腐蚀。推广乙醇汽油面临的其他方面问题还包括:①乙醇生产过程中的能量问题也很突出,即乙醇生产过程中要耗用较多的热量,从能量方面来说是不合算的,仅回收利用总能耗的92%;②汽化潜热大,其低温启动性能和驱动加速性能较差;③汽化性能差;④乙醇的调合蒸汽压指标使炼厂不能在汽油中调入轻质、能清洁燃烧的戊烷组分,导致炼油厂汽油产量下降。

总结起来,从国际炼油技术的发展和环境要求看,通过装置改造以实现烷基化为代表的催化重整是最根本的解决办法。但对于炼油产业尚处于发展中的中国而言,要改变整个石油加工结构需要一个较长的过程,而且投资巨大,短时间难以实现。因此,当前探索研究清洁原料新添加剂的开发是解决问题的理想方法。

二、TKC系列汽油辛烷值添加剂的作用原理及性能

在过去八十几年时间里,汽油辛烷值添加剂的思路一直是依靠单一剂型或组分来提高辛烷值。这种方法的缺点在于,难以在解决汽油辛烷值的是高与不造成新的污染之间达到平衡。TKC系列产品的成功开发应用作为复合型汽油辛烷值添加剂的代表,填补了这一行业的空白,比较理想地解决了靠单一剂型或组分来提高辛烷值所存在的种种弊端。

1、问题的提出

TKC课题的研究始于1988年。当时研究小组的目标是为了综合利用油田生产中的副产品稳定轻烃。根据稳定轻烃和一些低标号汽油的理化特征,结合国内外汽油添加

剂研究的合理内核,我们对稳定轻烃进行了集中科技攻关。研究发现,要使稳定轻烃达到车用汽油标准的关键是:在技术上,解决稳定轻烃的三大不足——馏程分布窄且不合理、饱和蒸气压高、辛烷值低;在经济上,使稳定轻烃调和成标准车用汽油时的成本不能高于市场车用汽油的售价。据此,我们对中原油田油气集输公司、胜利油田和大港油田提供的稳定轻烃就如何调配成车用汽油进行探索。公司的科技人员会同曲阜师范大学、复旦大学、湖南大学、兰州大学等有关单位的专家,经过六年的研究攻关,首先研制出较为理想的稳定轻烃调配剂TKC(LS-1,LS-2)。在此基础上公司后来的研究更专注于油品组分的辛烷值提高的研究,又陆续开发出直馏油、石脑油辛烷值添加剂TKC(LS-Q-1,LS-Q-2)以及催裂化油辛烷值添加剂TKC(LS-T-1、LS-T-2、LS-T-3)。

2、TKC产品对油品辛烷值的作用机理

众所周知,汽车爆震现象的产生原因是因为汽油在汽缸内燃烧过程中,随着缸体内温度和压力的升高会产生大量的过氧化物聚集。这种聚集造成火花塞火焰在正常传播到达之前,缸内混合气已形成多点燃烧,并导致火焰燃烧速度提高10-100倍,使得缸内压力骤然增加,从而形成爆震。因此,消除气缸中的过氧化物是减轻爆震的关键。四乙基铅具有这种性能,其作用机理是:在高温高压下使游离出的铅与过氧化物作用生成氧化铅、二氧化铅,从而消除过氧化物,减少爆震燃烧的发生。进而和溴乙烷等物反应,形成溴化铅,并使之在高温下呈气态诱出,并避免铅的聚集。

TKC与四乙基铅具有同样理想的抗爆震作用。但TKC与四乙基铅相比,它的抗爆性能又有以下突出特点:TKC虽然是由短链、长链以及环链等不同种类的不饱和烃组成的,但它的关健之处在于,在TKC中加入了一种我们专门研制开发的具有特殊功能的催化剂。这种催化剂在一定的温度和压力条件下,可降低不饱和烃开链的活化能,而这种反应的能量恰恰来自混合气被压缩的不同过程中所产生的过氧化物,其反应方程式为:

\//\/

C=C+R-C-O-O C-C+R-C-0—O

/\\/\/\

这样,在燃烧反应之前,使不饱和烃变成了环氧化合物。由于环氧化合物本身辛烷值较高,同时使烯烃分子自身在燃烧过程中也添加了氧原子,使燃烧变得更彻底,不仅降低了过氧化物的浓度,提高了辛烷值;而且降低了有害气体排放的浓度。因而加入少量TKC即可以较大幅度地提高油品的辛烷值。以催裂化油为例,加入1‰-5‰左右的TKC就可以使其辛烷值提高到81—87(MON),达到高标号汽油的标准(见表一)。

表一用TK9调配油品的前后辛烷值变化(MON)

①有关数据参见胜利炼油厂化验中心《报告单》,第63.65页。

根据1997年1月林源炼厂提供的研究试验结果表明(见表二),加入2‰TKC可使该厂催裂化汽油的辛烷值从89.4提高到91.0(RON)。在工业放大试验中,他们在850吨催裂化油中(RON值为89.4)加入了2‰的TKC(LS-T-1型,1.75吨),调配成成品油后测试的辛烷值为91.0。与实验室试验结果相同,这表明TKC已完全具备了进行大批量工业生产的条件。

表二林源炼厂催裂化油用TK9调配后的测试结果

②有关数据参见胜利石油管理局运输指挥部汽车测试计量中心《实验报告》,第56页及长春汽车研究所《试验报告》第28页。

1996年10月在辽河石化总厂进行的试验结果表明(见表三),添加2‰,TKC(LS -T-1),可使该厂生产的催裂化油的辛烷值从89.5提高到92,添加4‰。可使其辛烷值达到93。若使用TKC(LS-T-2),添加4‰可使催裂化油的辛烷值达到93.0以上。

表三辽河石化总厂催裂化油用TKC调配后的测试结果(RON)

注:本表有关数据取自辽河石化总厂《试验报告》第2—3页

3、有效成分的合理使用

(1)燃烧速度的控制

提高发动机功率的方式有两种:一是加大缸径(即增加排量),二是提高转速。现

代汽油机的发展更倾向于后一种方式。例如,普通桑塔纳轿车加速时转速可达3000-4500转/分,活塞完成一个行程的时间仅为0.01—0.006秒,所以调整混合气的燃烧速度显得非常重要。而且,在这一过程中应使ΔP/ΔΦ,PX、TX值不可过大,以免造成爆燃;也不可过小,以防造成燃料浪费以及CH排放量的增加。当然,燃烧的性质主要取决于油品中各种烃类自身的基础性质,而TKC的优越之处即在于它所提供的催化剂使直链烃在直线火焰沿碳链燃烧过程中。部分叔、季碳原子和其相联碳原子间的化学键首先断裂,这使一些线性火焰变成湍流火焰,火焰燃烧也变得均匀。实验证明,在油品中加入TKC之后,动力性明显提高,台架节油率在3%以上,行车实验节油率最高达到8%-12%。①

(2)蒸气压的调整

TKC的另一特点是,它所提供的一种互溶剂使汽油中小质量的烃类分子之间的作用加强(都对互溶分子作用),而这种互溶物存在于储存油品的各种容器内(含化油器)油品自身与空气接触的所有界面上。实验证明,这种作用的加强可降低蒸气压达10千帕/2

m左右,同时也使初馏点提高。

(3)发动机缸体的清洁

TKC中引入使用一种金属干洗剂,使油品中的胶质体分散和燃烧,从而降低发动机内积炭和发动机噪声,并延长发动机使用寿命。

TKC技术的先进之处就在于其采用了国际上最先进的添加剂理论,并进行了综合利用,针对用TKC所调配的基础油和调配目标的不同,TKC的组分也有所不同,如催裂化组分使用的TKC(LS-T-1),就不含降蒸气压组分。同时,各组分混合使用时,比使用单一组分时的效果略有降低,请使用者注意。

三、TKC与四乙基铅(TEL)和MTBE、MMT的对比分析

TKC系列产品作为一种性能优异的汽油辛烷值添加剂,与目前石油炼制业普遍使用的四乙基铅、MTBE 和MMT的相比,具有许多突出的优点。

表四各种商品化汽油辛烷值添加剂的对比

表五四乙基铅(TEL)MTBE、MMT和TKC的应用性能比较

*指稳定轻烃调配剂(LS-1,LS-2)

①有关数据见胜利石油管理局汽车计量中心《汽车不解体测试报告》,第56页;及山东内燃机质检站《内燃机试验记录》,第57页。

四、TKC系列产品的技术指标及应用性能

1、TKC系列产品的技术标准

表六产品的技术标准(执行标准Q/LDS001-2002)

2、TKC系列产品对不同油品的调配作用

采用TKC系列产品调配不同的基础油时,使用TKC的型号和添加量都不相同。具体如下表七:

表七TKC系列产品对不同油品的调配作用

注:70#汽油在中国标准中已被淘汰,以上70#调和目标可对汽油各组分的辛烷值提高起到参考作用。

3、TKC对各种基础油辛烷值的作用

(1)稳定轻烃:以克拉玛依采油二厂、五厂生产的稳定轻烃为例,辛烷值为64—66的基础油分别加入5%的TKCLS-1和LS-2后,辛烷值分别达到73.6(MON)和91.2(RON)

(2)直馏油:以济南石化二厂、胜利炼油厂和东明炼油厂油样的有关数据列表说明如下:

表八TKC(LS-Q-1.2)加入直馏油中辛烷值的变化(MON)

(3)催裂化油:以林源炼油厂、辽河炼油厂、胜利炼油厂油样的有关数据列表说明如下:

表九TKC(LS-T-1、2、3)加入催裂化油中辛烷值的变化(RON)

4、对TKC调配油品质量指标的全分析:

TKC对油品性能的改善作用是多方面的。它不仅可以提高油品的辛烷值,也可以根据需要部分地改变油品的理化指标,而基础油的不同以及所选用添加剂的型号、添加量的不同,调配后油品的理化指标改变的程度也不相同。当基础油为催裂化油时,由于该基础油除辛烷值一项外的其它理化指标已达到国家标号汽油的标准,所以这时所选用的添加剂应为TKC(LS-T-1、LS-T-3)型。由于添加量小,对油品的辛烷值虽有较大影响,但不影响其它理化指标。表十和表十一所示的在辽河石化总厂和陕西榆林炼油厂进行的调配油的理化指标测定结果,证明了上述观点。

表十加剂催化汽油和90#无铅汽油质量标准对比表

注:本表有关数据见辽河石油总厂《试验报告》,第50页

陕西省石油产品质量监督检验二站西安市石油产品质量监督检验站

检验报告

五、TKC调配油品在汽车整车及发动机台架的实际应用效果

TKC系列产品已经过国家有关权威部门组织的汽车整车及发动机台架的严格测试并给予肯定。

(1)国家汽车质量监督检验中心长春汽车研究所对TKC调配汽油和含铅汽油进行整车性能对比实验,通过起步连续换档加速、ECEl5工况、固定档位加速、五档等速等各种工况运行下的检测,结论为:从整车的动力性、经济性及排放性能对比实验结果看,用TKC替代四乙基铅后,性能明显提高,在技术上是可行的。

(2)汽车不解体测试结果列于表十三和表十四中。用TKC调配的汽油与国标汽油相比,输出功率明显提高,油耗明显降低,尾气中CO的排放量大幅度减少。

表十三汽车不解体测试结果

注:本表有关数据胜利石油管理局运输指挥部汽车测试计量中心:《汽车不解体测试项目试验报告》,第56页。表十四汽车不解体测试中TKC调配油与国标汽油的输出功率对比(试验车型;桑塔纳)

*国标90#汽油;**用TKC调配的90#汽油

(3)实车道路试验。1996年8月在新疆进行了两项道路行车试验。第一项是用经TKC调配的70#汽油进行重车行驶(解放141汽车载重10吨)测试。结果表明,70#调配汽油与克拉玛依炼油厂70#标号汽油相比,其加速性、爬坡性、启动性、怠速性等性能相同。第二项是用TKC调配的90#汽油作为燃油,用桑塔纳轿车(乘坐5人)进行了行驶测试。结果表明,90#调配汽油与克拉玛依炼厂的90#标号汽油相比,启动性、怠速性能相同,而加速性、动力性前者优于后者。①

六、TKC在乙醇汽油调和中的作用

乙醇汽油技术在国外已十分成熟。国外使用车用乙醇汽油的国家主要是美国和巴西,欧盟国家也使用车用乙醇汽油。乙醇辛烷值非常高,而且也不需要其它较大分子醇作共溶剂,可使成品油辛烷值提高2~3个单位。这是由基础油的烃类类型和辛烷值决定。因此,在汽油中加入10%乙醇可使调合汽油升级,经济价值极为可观。尤其是近来对MTBE限制使用的呼声越来越高也使得乙醇汽油在国际油品市场上使用越来越多。但由于乙醇价格较高,其应用也受到一定限制。在美国,由于政府对乙醇实行税收优惠,使得其应用比较广泛。目前中国正由国家发改委组织重点推广车用乙醇汽油,这将为国家积极、稳妥地推广使用车用汽油,规范产品混配,起到保证作用。除了成本问题,要推广使用醇类辛烷值改进剂还存在一些现实的技术问题,首先,在当汽油中渗入含水的乙醇后,会发生分离现象;另外甲醇和乙醇蒸汽压高,也令使用这种改进剂产生一定的环保问题,国内也曾有过直接使用乙醇作为汽油添加剂而导致成品油含有羟基而降低油品品质的先例。

而TKC在应对乙醇汽油推广使用中存在的这些问题上提出了稳定可靠的解决方案:在技术问题上,TKC本身可以降低饱和蒸汽压,补充部分小分子醇类的缺陷;同时因为中TKC中相当一部分组成和羟基、氢基共同作用,减低了脂肪烃的憎水性,改善了乙醇汽油吸水产生相分离的现象,从而增加油品、乙醇和水的互溶作用。在降低使用成本问题上,由于TKC可以广泛地提高辛烷值,使乙醇汽油的调和可以不必以90#汽油作为基础,而直接添加部分直馏油,甚至是稳定轻烃和其它组分。这样就较大幅度地降低了乙醇汽油的生产成本,对于乙醇汽油的广泛使用将起到积极的推动作用。

七、TKC的使用说明和优秀方案推荐

(一)实行汽油新标准后的使用TKC添加剂的现实作用

国家标准化管理委员会汽油新标准(GB17930-1999)的推行标志着中国在推广使用高辛烷值无铅汽油上已经没有死角,而北京等大城市则更是率先执行了更为严格的城市清洁车用无铅汽油新标准,这使得国内的炼油厂家面临着降低成本和提高油品指标的双重压力。油品中的高辛烷值组分本来已十分缺少,而由于新标准中对烯烃、芳烃、苯、氧等含量指标的新规定,炼油厂商如果大剂量的使用催化和重整汽油以及MTBE,则势难达到新的标准要求,而使用TKC就大大增加了油品调和的灵活性。下面就是一些炼油企业使用TKC以适应新标准要求的成功案例:

(二)TKC的使用说明

1.TKC的贮存及保质期

TKC基本无腐蚀性,可置于密闭容器内于阴凉处存放。另外,在存放时应防止其它化学成分混入TKC中,以免影响其使用效果。TKC保质期为两年。

2.TKC的油溶性

TKC的V/V=1,油溶性较好,调和后罐内循环1小时即可。其它条件如车调,船调可不用计算循环时间。

3.TKC的调和方法

可利用原炼厂的加铅装置,也可直接在馏出口,或贮罐前管线加注。

4.TKC的使用温度

在使用时,TKC自身温度不应低于0℃。在严冷冬季,如遇温度过低可能有部分晶体析出(少有发生),这时可将包装桶移至暖库,或用蒸气加热至10℃以上即可恢复正常使用。

高原国际能源开发有限公司二零零五年五月

2020年中国研究生数学建模竞赛B题--汽油辛烷值建模

2020年中国研究生数学建模竞赛B题 降低汽油精制过程中的辛烷值损失模型 一、背景 汽油是小型车辆的主要燃料,汽油燃烧产生的尾气排放对大气环境有重要影响。为此,世界各国都制定了日益严格的汽油质量标准(见下表)。汽油清洁化重点是降低汽油 中的硫、烯烃含量,同时尽量保持其辛烷值。 欧盟和我国车用汽油主要规格 车用汽油标准辛烷值 ≯≯≯≯ 国Ⅲ(2010年)90-9715014030 国Ⅳ(2014年)90-975014028 国Ⅴ(2017年)89-951014024 国Ⅵ-A(2019年)89-95100.83518 国Ⅵ-B(2023年)89-95100.83515 欧Ⅴ(2009年)951013518 欧VI(2013年)951013518 世界燃油规范(Ⅴ类汽油)951013510 注: μg/g是一个浓度单位,也有用mg/kg或ppm表示的(以下同) 我国原油对外依存度超过70%,且大部分是中东地区的含硫和高硫原油。原油中的重油通常占比40-60%,这部分重油(以硫为代表的杂质含量也高)难以直接利用。为了有效利用重油资源,我国大力发展了以催化裂化为核心的重油轻质化工艺技术,将重油转化为汽油、柴油和低碳烯烃,超过70%的汽油是由催化裂化生产得到,因此成品汽油中95%以上的硫和烯烃来自催化裂化汽油。故必须对催化裂化汽油进行精制处理,以满足对汽油质量要求。 辛烷值(以RON表示)是反映汽油燃烧性能的最重要指标,并作为汽油的商品牌号(例如89#、92#、95#)。现有技术在对催化裂化汽油进行脱硫和降烯烃过程中,普遍降低了汽油辛烷值。辛烷值每降低1个单位,相当于损失约150元/吨。以一个100万吨/年催化裂化汽油精制装置为例,若能降低RON损失0.3个单位,其经济效益将达到四千五百万元。 化工过程的建模一般是通过数据关联或机理建模的方法来实现的,取得了一定的成

车用汽油(GB-17930-2013)

车用汽油(GB-17930-2013)

前言 本标准全文强制。 本标准依据GB/T 1.1—2009给出的规则起草。 本标准代替DB 31/427—2009《车用汽油》。DB 31/427—2009《车用汽油》自本标准实施之日起废止。 本标准与DB 31/427—2009相比主要变化如下: ——增加了正文首页的“警告”内容; ——将“本标准规定了由液体烃类和由液体烃类及改善使用性能的添加剂组成的车用汽油的要求 和试验方法、取样及标志、包装、运输和贮存”修改为“本标准规定了车用汽油的术语和定义、产品分类、、技术要求和试验方法、取样、标志、包装、运输和贮存、安全”; ——增加第3章“术语和定义”; ——将第4章产品分类修改为“车用汽油按研究法辛烷值分为89号、92号和95号三个牌号”; ——增加 5.1 车用汽油中所使用的添加剂应无公认 的有害作用,并按推荐的适宜用量使用。车用汽

——将“包装、标志、运输、贮存”修改为第7章“包装、运输和贮存”,内容修改为“根据GB 13690,车用汽油属于易燃液体,产品的安全标志、包装、运输、贮存及交货验收按SH 0164、GB 13690和GB 190进行。” ——增加第8章根据GB13690,车用汽油属于易燃液体,其危险性警示见GB 20581-2006中第8章的警示性说明; 本标准由上海市环境保护局、上海市质量技术监督局、上海市经济和信息化委员会提出。 本标准由上海市化学标准化技术委员会归口。 本标准起草单位:中国石化上海石油化工研究院、中国石化上海高桥分公司、中国石化上海石油化工股份有限公司、上海市机动车检测中心、上海市质量监督检验技术研究院、上海市环境科学研究院、中国石化上海石油分公司、中国石油上海销售分公司、中海油销售上海公司。

压缩比与汽油标号

压缩比~~~~~~汽油标号~~~~~~垂直涡流稀薄燃烧(MVV) 高压缩比发动机用低号油的原因在我们日常为爱车选择加多少标号的燃油时总会有一种误解,认为高压缩比的发动机一定要加高标号的燃油,低压缩比就没必要加高标号燃油了,更有人会认为进口车或档次比较高的车就要加标号高的油,用车的价格来衡量加多少标号的燃油等等。 压缩比确实能作为判断发动机采用燃油标号的依据之一,按照过去的说法,压缩比在8以下的发动机可以加90号汽油,压缩比在9以下可以采用93号汽油,压缩比在9以上则应该采用97号汽油。而实际上,凭我们现在的经验会发现,这个数据与厂家给出的数据并不贴服,例如现在绝大部分的发动机压缩比都在9以上,但大多数厂家都是标称可以加93号汽油的,甚至许多压缩比达到10的发动机,也可以采用93号汽油。更为极端的例子,像东风标致的2.0发动机,压缩比高达11,仍然说可以采用93号汽油。而三菱的EVO,它的压缩比只有8.8,但厂家仍然要求必须使用97号以上的燃油。 到底是以压缩比的判断为准,还是以厂家推荐的数据为准呢?厂家推荐数据为何会与常规的压缩比判断相悖呢?实际上燃油标号的选择,除了压缩比以外,还有很多的影响因素,我们必须综合考虑才能确定最佳的燃油选择,而厂家显然对自己的发动机是最有发言权的,所有我们在这一点上应该严格按照厂家的要求来做。除了压缩比,还有那些因素会对燃油标号的选择产生影响呢? 我们现在市场上销售的汽油主要有90、93、97和98等标号,这些数字代表汽油的辛烷值,也就是汽油的抗爆性,即实际汽油抗爆性与标准汽油的抗爆性的比值。燃油标号越高的燃油,它的抗爆性就越好,反之,燃油标号低的燃油它的抗爆性就相对来说要差一些。那么汽车压缩比和燃油标号之间究竟有什么关系呢,通常情况下高标号的燃油它的抗爆性好,适合使用高压缩比的发动机,低标号的燃油适合低压缩比的发动机。

汽油辛烷值测定法(研究法)

中华人民共和国国家标准 汽油辛烷值测定法(研究法)GB/T5487-1995 代替GB/T5487-85——————————————————————————————————————————————— 1 主题内容与适用范围 本标准规定了用美国试验与材料协会(ASTM)辛烷值试验机测定汽油辛烷值(研究法)的步骤、运转工况,试验条件以及操作细则等。 本标准适用于测定汽车用汽油的抗爆性。 注:其他类型的辛烷值机按甲苯标定燃料的标定值合格后,参照本方法进行汽油辛烷值测定。 2引用标准 GB484车用汽油 GB/T3144甲苯中烃类杂质的气象色谱测定法 GB/T4016石油产品名词术语 GB/T4756石油和液体石油取样法(手工法) GB/T8170数值修约规则 GB/T11117.1抗暴试验参比燃料参比燃料异辛烷 GB/T11117.2抗暴试验参比燃料参比燃料正庚烷 SH0041无铅车用汽油 SH0112汽油 3术语 3.1校验燃料 由异辛烷、正庚烷和乙基液混合而成用以检查发电机的工作状况。 3.2气缸高度 发动机气缸与活塞的相对位置,用测微计或计数器读数指示。 3.3爆震传感器 安装在气缸头上的磁致伸缩型传感器,直接和气缸内燃烧气体相接触,产生与气缸内压力变化速率成正比的电压,气缸内的爆震倾向越严重,传感器产生的电压数值就越大。 3.4爆震仪 接收由爆震传感器送来的信号,删除其他振动频率的波,只留下爆炸波,并将其放大,积分。得到一稳定的电压信号,在送给爆震表。 3.5爆震表 实际上是一个毫伏表,0~100分度来显示爆震强度(工作范围20~80分度)。 3.6操作表 在101.3kpa压力下,基础参比燃料调和油在产生标准爆震强度时,辛烷值与气缸高度(压缩比)之间的特定关系。 3.7爆震强度 在爆震试验装置上评价燃料时燃烧产生爆震强度的指示值。 3.8最大爆震强度油气比 燃烧在爆震试验装置中燃烧,产生最大爆震强度时燃料与空气混气比例称为最大爆震强度油气比,它是通过调节化油器中的液面高度来实现的。 3.9测微计读数或计数器的读数 是气缸高度的数字指示(发动机运转时在规定的压缩压力下,指示气缸高度的基准位置)。 3.10辛烷值 表示点燃式发动机燃料抗暴性的一个约定数值。 在规定条件下的标准发动机试验中,通过和标准燃料进行比较来测定,采用和被测定燃料具有相同抗爆性的标

我国汽油辛烷值添加剂的现状及研究进展 贺晓磊

我国汽油辛烷值添加剂的现状及研究进展贺晓磊 发表时间:2018-03-21T15:45:40.040Z 来源:《基层建设》2017年第35期作者:贺晓磊[导读] 国内广大科研工作者经过长期的努力,开发出了一系列高辛烷值汽油添加剂,使我国的清洁汽油有了较大的提高和发展。 内蒙古自治区石油化工监督检验研究院 010010 随着环保法规的日趋严格,世界各国都十分重视汽油质量的提高,推动了汽油产品的更新换代。我国从之前的止销售和使用含铅汽油到降低了车用汽油的烯烃含量。为了保证这些政策的顺利实施,国内广大科研工作者经过长期的努力,开发出了一系列高辛烷值汽油添加剂,使我国的清洁汽油有了较大的提高和发展。 此外现代汽车工业的发展,发动机要向高速、高压缩比的方向改进而低辛烷值的汽油在高压缩比条件下极易产生爆震。爆震的危害很大,普通的爆震可使发动机功率降低、加重积碳导致发动机运转不稳定,造成排放不合格;强烈爆震会使金属变软,极易损毁,因此需用高标号的汽油来避免爆震。提高汽油辛烷值的方法,可以通过发展催化重整及芳构化技术,以及醚化、烷基化、异构化等工艺,调整汽油组成。或者向汽油中添加有效的添加剂即可。由于前者涉及到炼制工艺的改进,存在着工艺复杂,投资巨大的问题,而后者既有效又经济,所以辛烷值添加受到了炼油厂家的青睐。汽油添加剂主要改善燃烧性能,提升辛烷值,防止爆震。目前,我国汽油添加剂产量很少,但随着油品质量的提高以及环保对油品质量要求的提高,汽油添加剂将会有所发展。按照汽油添加剂成分是否含有金属元素,可将其分为金属有灰类和有机无灰类两大类。金属有灰类促进剂能有效提高汽油的抗爆性,如四乙基铅,它的合成工艺简单、成本低廉且抗爆效率高。但四乙基铅有剧毒,含铅的燃烧废气是大气中铅污染的主要来源。而且燃烧后残留物危害发动机缸体,很多国家已经禁止使用,我国已经限制使用。近一段时期以来,汽油辛烷值促进剂的开发研究一直朝着有机无灰类方向发展。有机无灰类添加剂主要是含氧有机化合物和含氮有机化合物,主要分为两部分,醚类汽油添加剂和醇类汽油添加剂。 1.醚类汽油添加剂 20世纪70年代甲基叔丁基醚(MTBE)作为提高辛烷值的调和组分开始被人们注意,后来作为甲基环戊二烯三羰基锰(MMT)和四乙基铅(TEL)的替代品在世界范围内广泛使用。 MTBE作为汽油添加剂已经在全世界范围内普遍使用。它不仅能有效提高汽油辛烷值,而且还能改善汽车性能,降低尾气中一氧化碳含量,同时降低汽油生产成本。MTBE应用至今,需求量、消费量一直处于高增长状态,其生产技术也日趋成熟。但MTBE 极易穿过土壤进入地下饮用水系统,性质稳定、较难分解,还会对人的肠胃、肝脏、肾脏和神经系统以及生态环境等造成一定程度的危害。因此,1996年由于饮用水中MTBE含量超标,美国Santa Monica 市50%的供水系统关闭。1999年美国加利福尼亚空气资源委员会规定从2002年12月31日起禁止加州新配方汽油中使用MTBE,后推迟一年到2003年12月31日起实行,之后纽约州也签署法案规定2004年起禁止使用MTBE。2010年美国已经全面禁用MTBE,禁用后积极推广乙醇汽油,聚异丁烯等。不过,美国发生的对MTBE恐慌,在近期内不会扩散到欧洲和亚洲。迄今,欧洲和亚洲尚无禁用MTBE的任何意向,这些地区将在一定时期内继续采用MTBE作为清洁汽油的主要组分。在亚洲,MTBE 需求量正在快速增加,我国MTBE也处于快速增长状态,特别是我国近期推广使用高辛烷值无铅汽油,并在北京、上海、广州率先执行城市清洁车用无铅汽油新标准,所用辛烷值改进剂主要是MTBE。因此,我国MTBE需求量还将有所增加。随着吉化锦江油化厂、林源炼油厂、前郭炼油厂等MTBE装置的投产,我国现有MTBE装置年总产能力已达62万吨。目前,我国汽油用MTBE年需求量为80万吨,缺口较大。 我国目前对MTBE加量没有限制,但受氧含量限制,一般加量在10%以内,辛烷值提升幅度为1-2。此外被用作抗爆剂的醚类物质还有二异丙醚,叔戊基甲基醚,乙基叔丁基醚等。 2.醇类汽油添加剂醇类用作汽油添加剂由于含有羟基而显示出不良效果,但甲醇、乙醇、丙醇和叔丁醇等低碳醇或其混合物都已用作汽油添加剂。其混合物用作汽油添加剂具有与MTBE相似功能,还有价格优势,且用于高压缩比的汽车发动机可以大大提高其热效率,促辛性能与MTBE相似,尤其是可降低CO,NOx和THC(总碳氢)的排放,具有优良的排放性能,使其用作汽油调合剂具有较大的市场潜力。目前我国正积极推广车用乙醇汽油。其不仅有价格优势,而早在20世纪二三十年代美国和巴西就已经开始推广使用乙醇汽油,是乙醇汽油的两大消费大国。我国从2003年开始陆续在黑龙江、吉林、辽宁、河南、安徽、河北、山东、江苏、湖北等27个城市推广E10乙醇汽油,目前国家已经确定在河南、吉林和黑龙江试点生产和使用乙醇汽油。据报道,一般情况下汽油中加入体积比为10%的乙醇,辛烷值提高2~3个单位,雷德蒸汽压也有明显提高。较低的蒸发热和远低于甲醇的毒性使其具有很大的市场竞争力。据国家汽车研究中心对乙醇汽油所作的发动机台架试验和行车实验结果,在现有发动机不做任何改动前提下,燃烧后产物中CO,碳氢化合物和NOx排放都有减少。但是乙醇汽油有轻微的吸湿性,这使其具有一定的腐蚀性,因此对发动机油有更高要求,且其热值低于普通汽油,因此燃油消耗量大。随着我国汽油无铅化、清洁化进程的加快,近年来我国对MTBE的需求,生产也进入了快速增长的阶段,MTBE在一定时期内仍是我国主要的汽油添加剂。但从长远来看,汽油标准与国际接轨是未来发展的必然趋势。从近年来世界汽油标准的发展来看,很多国家基本上紧随美国,只存在实施时间的差异。随着我国加入WTO,我国汽油标准与国际接轨也是必然趋势。一旦MTBE的毒性明了,我国迟早会采取措施来限制或禁用MTBE。因此扩建MTBE装置应深入研究,统一规划,对新建装置的审批要谨慎对待。法国已经开发出了对现有MTBE,装置稍加改造就可以生产异辛烷,作为MTBE的替代品。因此我们应积极跟踪国外先进的烷基化技术,切实做好引进技术的消化吸收工作。 乙醇汽油和纳米燃料油添加剂在我国还处于试验和发展阶段。在目前的乙醇生产技术条件下,发展乙醇汽油短期内有助于消化国内的陈化粮,提高汽油的辛烷值;但我国人多地少,粮食过剩只是暂时现象,从长远来看,大规模发展乙醇汽油需要经过时间的考验。同时我们应重视乙醇生产新技术的开发,力争通过技术进步来扩大乙醇生产的原料来源,降低生产成本。参考文献:

烷基化汽油简介

一.提高汽油辛烷值的途径 目前提高汽油辛烷值的技术主要有催化重整技术、烷基化技术、异构化技术和添加汽油辛烷值改进剂(抗爆剂)。 催化重整主要是提高汽油中的芳烃和异构烷烃的量来提高汽油辛烷值,其中芳烃对提高辛烷值的贡献更大,通过重整来提高汽油辛烷值的不利方面是芳烃含量及苯含量升高。 烷基化汽油是用LPG中的异丁烷与丁烯-1、丁烯-2、异丁烯反应生成异辛烷,所以烷基化汽油组分全是异辛烷,它辛烷值高、敏感度好、蒸气压低、沸点范围宽,不含芳烃、硫和烯烃的饱和烃,是理想的高辛烷值清洁汽油组分。 异构化是提高汽油辛烷值最便宜的方法之一,可使轻直馏石脑油(C5/6)中的直链烷烃转化为支链烷烃,从而提高汽油辛烷值10%~22%。 各种添加剂能显著地提高汽油抗爆性的能力,如MTBE是开发和应用最早的醚类辛烷值改进剂,但由于它们不是汽油的组分(烃类),往往在使用过程中会带来这样那样的问题,同时添加剂的价格往往很高。 二.汽油的基础组分 美国的汽油构成大致为催化裂化汽油占 1/3,催化重整汽油占 1/3,其他高辛烷值调合组分占 1/3。西欧催化裂化汽油 27%,催化重整汽油 47%,剩余部分主要是其他高辛烷值组分。 我国汽油中催化裂化汽油比例高达 75%,重整汽油、烷基化油、MTBE等比例很低,汽油组成的差别使得我国汽油质量与国外有明显差距。 我国目前车用汽油质量的主要问题是,烯烃含量和硫含量较高 三.烷基化汽油 1.烷基化汽油的特点 主要为异构烷烃,几乎不含烯烃、芳烃,硫含量低 辛烷值高,辛烷值一般为95~96,甚至可达98 汽油敏感性低,研究辛烷值与马达辛烷值差值小于3 蒸气压较低,可多调入廉价高辛烷值的丁烷 燃烧热值高,可在高压缩比发动机中使用 2.烷基化原料

93号汽油与97号汽油的区别

93#和97#油的区别 目前市场上汽油有90、93、95、97等标号,这些数字代表汽油的辛烷值,也就是代表汽油的抗爆性,与汽油的清洁无关。所谓“高标号汽油更清洁”的纯属误导。按照发动机的压缩比或汽车使用说明书的要求加油,更科学、更经济,并能充分发挥发动机的效率。 汽车发动机在设计阶段,会根据压缩比设定所用燃油的标号。压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。从动力性和经济性方面来说,压缩比应该越大越好。压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油机的压缩比又不能太大。简单地说,高压缩比车使用高标号的燃油。燃油标号越高,油的燃烧速度就越慢,燃烧爆震就越低,发动机需要较高的压缩比;反之,低标号燃油的燃烧速度较快,燃烧爆震大,发动机压缩比较低 燃油的标号还涉及到发动机点火正时的问题。低标号汽油燃烧速度快,点火角度要滞后;高标号燃油燃烧速度慢,点火角度要提前。例如一台发动机按照说明书要求应加93号汽油,现在加了90号汽油,可能会造成发动机启动困难;加速时,发动机内有清脆的金属碰撞声音;长途行车后,关闭点火开关时发动机抖动。 选择汽油标号的主要依据是发动机的压缩比。盲目使用高标号汽油,不仅会在行驶中产生加速无力的现象,而且其高抗爆性的优势无法发挥出来,还会造成金钱的浪费。 油号的基本概念 93汽油与97汽油 一、基本概念: 1、压缩比: 汽车选择汽油标号的首要标准就是发动机的压缩比,也是当代汽车的核心节能指标。引擎的运行是由汽缸的“吸气——压缩——燃烧——排气——吸气”这样周而复始的运动所组成,活塞在行程的最远点和最近点时的汽缸体积之比就是压缩比。降低油耗的成本最低效果最好的方法就是提高发动机的压缩比。提高压缩比只是改变活塞行程,混合油气压缩得越厉害,它燃烧的反作用也越大,燃烧越充分。但压缩比不是轻易能动的,因为得有另一个指标配合,即汽油的抗爆性指标,亦称辛烷值,即汽油标号。

汽油辛烷值

汽油辛烷值......争论97,93,90汽油好坏 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波之波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。 减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度.(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。 (8)保持冷却系作用良好. 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。

汽油燃烧添加剂

提高汽油燃烧效果添加剂 班级:08化工(2)班姓名:高娟学号:0803022028 汽油是经原油提炼而成的碳氢化合物与各种添加剂的混合物,汽油品质的好坏主要取决于对原油提炼的工艺和精度,添加剂只是辅助作用。汽油添加剂是为了弥补汽油在某些性质上的缺陷并赋予汽油一些新的优良特性,在汽油中要加入的功能性物质。其添加量主流是以1:1000,具有提升动力、清除积炭、清洁油路、节省燃油、防锈等功效。 近年来,各种各样的化合物都被试用作燃料油添加剂。作为燃料添加剂必须具备下列条件: (1)在油品中的添加浓度不大而效果显苔。 (2)能完全燃烧而不产生沉淀。 (3)对燃料其它性质不能有负作用。 (4)要溶于燃料或其组分而难溶于水。 (5)在任何使用温度下在燃料中都是稳定的。 (6)容易得到而且价钱便宜。 汽油添加剂是一种有机化合物,添加汽油添加剂的主要目的不是省油,而是提高汽油的质量,清洁发动机内部。 汽油添加剂功能介绍: 一、清除积碳,清洁燃油系统,新一代汽油添加剂其清净活化因子能促燃油中的胶质物以及发动机积碳等有害物质,连续5次添加洁力神汽油添加剂后,排气管上的积碳明显减少,滤清器、排气阔、燃油系统等均非常清洁。 二、增强动力性能,新一代汽油添加剂中的纳米成份,能吸附、包裹胶质物,在高温作用下在燃烧室产生气体性“微爆”,使燃油二次雾化,引发完全燃烧,提升引擎动力。90%以上车辆首次使用洁力神汽油添加剂后,明显感觉动力增强。特别是车乏力、旧了、载重、远行时感觉更明显。 三、改善雾化,节省燃油,新一代汽油添加剂其凭借纳米分子材料,直接攻击油分子中的长链碳键,在燃油室产生“微爆”,使汽油二次雾化,引发完全燃烧,提高热效率、降低油耗。洁力神汽油添加剂实车对比试验,能节省10~18%燃油。特别是长距离高速行驶,比平时更省,能直观感受到。

由辛烷值来说说用什么标号燃油

由辛烷值来说说用什么标号燃油 汽油最初是煤油提炼的废弃品,后来被利用作为内燃机燃料并促进了汽车工业的发展。汽油是碳氢化合物,主要成分为五碳至十二碳烃类有机物。以前用蒸馏法提炼汽油时,汽油中一部分是链式分子结构,还有一部分是环式分子结构,链式分子结构的成分会早于环式分子结构的成分提前燃烧,而且是无规则。如果汽油在发动机活塞还没有达到上顶点、火花塞未及点火就压燃了,就形成爆震。爆震轻者影响发动机工作效率、增加油耗、发动机抖动增加,重者冲击气缸、损坏发动机。当出现明显爆震的时候会产生敲击声,俗称敲缸。为了抗爆震燃烧,即防止汽油在发动机汽缸中加压时不规则的提前燃烧,就要提高汽油的抗爆性。早期的汽油靠添加适量的四乙基铅来阻滞汽油受压提前燃烧,四乙基铅对人体有毒,污染环境,因此需要用无铅汽油替代含铅汽油。不同烷烃的抗爆情况不同,异辛烷抗爆性最高,正庚烷抗爆性最差,将这两种烃按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。汽油辛烷值是汽油抗爆性的表示单位,在数值上等于在规定条件下与试样抗爆性相同时的标准燃料中所含异辛烷的体积百分数。在石油提炼技术改进后,采用催化裂解法,可以把链式分子合成辛烷,也可以把重分子裂解成较小的汽油分子并催化变成辛烷。因此汽油不再用添加四乙基铅而是靠调节辛烷值的程度来控制抗爆性。 汽车发动机的工作离不开燃料,燃油的性能指标是发动机设计的一个重要依据,汽车应用消费也需要一个固定的燃油标准,辛烷值就是一项重要指标。汽油由原油分馏及重质馏分裂化制得,在原油加工过程中,蒸馏、催化裂化、热裂化、加氢裂化、催化重整、烷基化等单元都产出汽油组分,但辛烷值不同。如辛烷值太低,其易燃性在并不大的压缩下就会燃爆。将石油炼制得到的直馏汽油组分、催化裂化汽油组分、催化重整汽油组分等不同汽油组分经精制后与高辛烷值组分经调和,得到各种标号的汽油产品(90、93、97等),过辛烷值区分不同的抗爆震性能,标号越高、抗爆性也越高。原油中不同程度含杂质、含硫,为避免硫排放而导致酸雨,因此硫含量高的汽油组分还需加以脱硫精制。烃类充分燃烧后形成水和二氧化碳,去除汽油中的胶质、硫和其它杂质越彻底,汽油也越干净,排放也就更环保,发动机燃烧残留积碳也越少,所以现在推广应用清洁汽油对环保和发动机本身都有好处。清洁汽油与原对应标号93、97号油抗爆震效果相当的

巴孚汽油添加剂研究心得

巴孚原液具有分为 3540主要用于勾兑巴孚G17瓶装,1夸脱(945ml)原液约180元 3606(比3540提升了PEA的含量)主要用于勾兑巴孚G17plus瓶装,1夸脱(945ml)原液约180-200元 3606N(比3606提高了辛烷值) 3638专供大众汽车使用,1夸脱(945ml)原液约240元 3131专供奔驰宝马保时捷大众奥迪高端车使用,1夸脱(945ml)原液约310-350元 3191专供宝马奔驰保时捷使用,1夸脱(945ml)原液约315-360元 3737专供宾利劳斯莱斯保时捷奔驰宝马超跑使用,1夸脱(945ml)原液约418-500元 铁盒装3131 S45 N(大众奥迪G 001 770 A2)价格45-50 铁盒装3131 S45 N(保时捷000 043 206 89)价格55-60 铁盒装3131 S45 N(奔驰A 000 989 25 45 12)价格55-60 一,发动机积碳分类和对发动机的影响。 汽车的发动机一共有3个系统,分别是燃料系统,进气系统,燃烧系统,每个系统都会产生沉积物,并对发动机的正常使用产生影响。 3个系统的沉积物分别有专用的名词,分别见下: 燃油系统的沉积物: 喷嘴沉积物(PFI),导致发动机的喷嘴流量损失 进气系统的沉积物: 进气门沉积物(IVD),分布在节气门、进气歧管、进气阀门上的沉积物,导致进气发动机进气阻力增大,充气混合气油系数下降,影响发动机的功率 燃烧系统的沉积物: 燃烧室沉积物(CCD),在活塞顶、发动机缸盖、排气阀门上的沉积物,导致造成燃烧室空间减少,增加排放和发动机产生“敲缸”等 为什么强烈建议中国用车的朋友要关心这个问题呢? 只要是汽车用汽油都会有积炭,但其他国家的车的积炭情况可能远远好于中国的车,这个是由于中国的汽油质量决定的。中国的汽油由于进口原油品质的问题和炼制工艺和成本的限制,生产出来的汽油烯烃含量远远高于国际标准,中国汽油的烯烃含量是40%左右,而国际标准一般在10%左右,烯烃参与会在发动机内产生大量积炭,而在油箱里长期也会形成胶质,影响油路和油表的准确。这个也是进口宝马奔驰等车一定要求在保养时加一罐添加剂的原因,把平时积下的积炭和胶质用力清洗一下。而在2009年以前中国加油站的汽油里是会加入一定含量清洁剂的,我记得当时是在发票上敲一个”清洁剂已加”的图章。后来加油站就取消了加清洁剂,而是另外高价卖一些添加剂,比较出名的就是海龙,其主要有效成分Piba原来是用德国巴斯夫的,现在主要来源于吉林炼化,并配合以煤油或者航空煤油作为稀释溶剂,目前其品质远差于那些用进口原料生产的添加剂;由于有煤油的存在,你会感觉动力增强了,这个不是添加剂的功效,这个是煤油的作用。大家身边或者单位有汽油发电机的话,可以问一下,其中的火花塞没多少天就会一塌糊涂了,由于固定怠速运行,所以积炭产生是最快最严重。这个是最直观感觉中国汽油质量的方法了。 二,燃油添加剂的主要化学成分和效果分析和使用 1、聚异丁烯丁二亚酰胺PIBSI也可以清洁化油器和节气门和进气管沉积物,效果不如以后发明的PIBA聚异丁烯胺 2、1970年研制出的聚异丁烯胺(PIBA)可以对燃油系统的沉积物(PFI)和进气系统的沉积物(IVD)有优秀的清洁作用(节气门,进气歧管,进气阀,喷油嘴),会增加燃烧室沉积物(CCD)的生产,但PIBA和合成载体油复合时,可以降低CCD的生成,接近到聚醚胺PEA的程度。 3、聚醚胺PEA在有效控制燃油系统的沉积物(PFI)和进气系统的沉积物(IVD)生成的同时,可以显著减少燃烧室沉积物(CCD)生成。但聚醚胺PEA对燃油系统的沉积物(PFI)和进气系统的沉积物(IVD)生成的控制不如聚异丁烯胺(PIBA)

辛烷值详解

辛烷值详解 爆震(震爆Knocking) 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸汽在气缸内燃烧时(活塞将汽油与空气混合压缩后,火花塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波与波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度。(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。(8)保持冷却系作用良好。 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。 汽油亦可藉再加入其它添加物而提升辛烷值。如普通汽油辛烷值不高(约为50),若再加入四乙基铅(C2H5)4P b时,其辛烷值提高至75左右,此为含铅汽油之来源,为除去铅在引擎内之沉积,再加入二溴乙烷,使产生P b Br2之微粒排放出来,但造成环境之污染。一般无铅汽油不含四乙基铅,改用甲基第三丁基醚,甲醇,乙醇,第三丁醇等添加物。 某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。 一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。 辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。 若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无

辛烷值测量仪操作规程(2021版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 辛烷值测量仪操作规程(2021版)

辛烷值测量仪操作规程(2021版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 一、测量前准备 1.开箱后检查仪器部件是否齐全 2.外观检查:传感器应光洁无划痕,与主机连接牢固无松动。 3.使用前确认仪器电量是否足够。 4.打开电源开关,仪器开机后应预热20分钟。 5.测量前将待测试样和仪器置于相同的试验条件下。 二、辛烷值测量(汽油) 1.将取样量杯擦拭干净,将样油倒入烧杯2/3处。 2.将传感器插入烧杯内,液面略高于传感器上平面,上下提位数次,排除传感器内空气。 3. 执行 设置 执行

功能 点击测试仪键,在油品选择界面按数字“1”选择车汽,按“1”选择国标,按键,显示该汽油样品的辛烷值,按键然后按键存储数据。 4.将所测辛烷值(RON前的数值)记录并签字(93汽油#辛烷值测量RON值不低于93;97#汽油辛烷值测量RON不低于97)。 三、十六烷值测量(柴油) 1.将取样量杯擦拭干净,将样油倒入烧杯2/3处。 2.将传感器插入烧杯内,液面略高于传感器上平面,上下提位数次,排除传感器内空气。 设置 执行 功能 3.点击测试仪键,在油品选择界面按数字“4”选择车柴,按键测量柴油样品的十六烷值,按键然后按下存储数据。 4. 执行 将所测十六烷值(CN前的数值)记录并签字(0#和-10#柴油十六烷值CN均不得低于49。

辛烷值意义

辛烷值意义 辛烷值是表示汽化器式发动机燃料的抗爆性能好坏的一项重要指标,列于车用汽油规格的首项。汽油的辛烷值越高,抗爆性就越好,发动机就可以用更高的压缩比。也就是说,如果炼油厂生产的汽油的辛烷值不断提高,则汽车制造厂可随之提高发动机的压缩比,这样既可提高发动机功率,增加行车里程数,又可节约燃料,对提高汽油的动力经济性能是有重要意义的。 抗爆剂, 又称抗震剂、汽油抗爆剂、辛烷值提升剂。是一类用于提高辛烷值,以防止或减轻汽油在引擎内燃烧时产生的爆震的高分子聚合物。 测定辛烷值 测定加有抗爆剂的汽油的辛烷值,可估量抗爆剂的效果,找出适宜的抗爆剂加入量。 标准燃料由异辛烷和正庚烷的混合物组成。异辛烷用作抗爆性优良的标准,辛烷值定为100;正庚烷用作抗爆性低劣的标准,辛烷值为0。将这两种烃按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。混合物中异辛烷的体积百分数愈高,它的抗爆性能也愈好。在辛烷值试验机中测定试样的辛烷值时,提高压缩比到出现标准爆燃强度为止,然后,保持压缩比不变,选择某一成分的标准燃料在同一试验条件下进行测定,使发动机产生同样强度的爆燃。当确定所取标准燃料如恰好是由70%异辛烷和30%正庚烷组成的,则可评定出此试油的辛烷值等于70 美国标准醇公司已开发出一种生物降解水溶性清洁燃料添加剂,它是直链C1~C8燃料级醇混合物,辛烷值为128,可代替MTBE用于汽油添加剂,也可作为四乙基铅替代物用于柴油掺混物。如果该产品被用作MTBE的代替品,那么因禁用MTBE而引起甲醇厂过剩的产能即可经过改造转产该产品。美国有家研究所现正在对该产品进行单独测试,估计到年底才能完成这些试验。专家指出,甲醇工厂经过改造,并采用专利催化剂适当改变一些反应条件,就能生产该产品。醇类用作汽油添加剂由于含有羟基而显示出不良效果,但甲醇、乙醇、丙醇和叔丁醇等低碳醇或其混合物都已用于汽油添加剂。其混合物用作汽油添加剂具有MTBE相似功能,还有价格优势,用作汽油调合剂具有较大的市场潜力。 柴油燃烧值, 3.3×107焦/千克 汽油的燃烧值为 4.66Xl07焦/千克 这些数字所标定的就是汽油的辛烷值,代表汽油的抗爆性,与汽油的清洁程度毫无关联。 国际0#、-10#柴油不含蜡、无腐蚀、无杂质,凝点可以-20摄氏度以下,热值为10800千卡/千克。 国内0号柴油的热值应该是9600千卡/千克,比国际0号柴油的热值低1200千卡/千克。 柴油能提供汽油所不能提供的动力,飞机,大卡车等肯定不能汽油供能。

汽油的标号涵义

汽油的标号 所谓90号、93号、97号无铅汽油,是指它们分别含有90%、93%、97%的抗爆震能力强的“异辛烷”,也就是说分别含有10%、7%、3%的抗爆震能力差的正庚烷。于是辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。应该用97号汽油的发动机,如果用90号汽油,当然容易产生爆震。 发动机压缩比与爆震 目前汽车使用最多的是所谓的四行程发动机,它是利用活塞在气缸里往复运动,以“进气、压缩、爆发、排气”四个行程,吸入汽油与空气的混合物,然后压缩它,再用火花塞点爆它而获得动力,得到动力后,再排出点爆后的废气。 首先我们要了解的是,四行程发动机用的燃料不一定是汽油,压缩天然气、液化石油气,甚至酒精,都可用来作为发动机的燃料。汽油之所以会成为主要燃料,是因为它相对容易取得,较容易储存,相对价廉。 正因为发动机可使用多种燃料,因此,在发动机发展之初,工程师们也做过许多尝试,除了尝试发动机不同的设计会有不一样的性能之外,也尝试使用不同的燃料会得到什么不同的效果。结果发现,当其它条件不变时,只要把发动机的压缩比提得愈高,就会得到更大的马力输出。然而,压缩比却不是可以无限制提高

的,当压缩比提得太高时,发动机就会出现爆震现象。所谓爆震,是经过压缩的油或气混合物,在火花塞还没点火之前,就因为被压缩行程所造成的气体分子运动产生的高热点燃,形成所谓的自燃现象,随后火花塞又再次点燃压缩油或气混合物,造成两团高爆火球在燃烧室里剧烈碰撞,因而产生如敲门一般的“喀、喀、喀”声。经过仔细研究,工程师们发现,原来爆震又和燃料的选择有关,如果选对了燃料,那么即使提高发动机压缩比,也不会发生爆震。 爆震与辛烷值 知道了爆震与燃料的关系后,工程师们开始把炼油厂里所产生的,可以作为发动机的各种油料逐一拿来测试和实验,结果发现,抗爆震效果最差的是“正庚烷”,因此工程师们就把最强的抗震指数100给了异辛烷,而最差的正庚烷则给了它一个0的抗震指数。于是,从此开始,辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。 那么什么是辛烷值呢?那是工程师们在实验室里,利用一部可调整压缩比的单缸发动机做试验所测得的数据。在实验中,随着压缩比的逐渐提高,测试燃料从没有爆震、燃烧顺畅的状况,逐渐调整到开始出现爆震。当爆震一开始出现的时候,就去比对异辛烷与正庚烷混合物的状况,如果出现爆震的状况时机,正好

汽车燃油使用知识——辛烷值、压缩比和爆震

汽车燃油使用知识——辛烷值、压缩比和爆震 对于每一车主来说,自从拥有汽车的那一刻开始,有一样东西就已经和自己形影不离了,是什么?答案当然就是汽油,或者严谨一点说是“燃料”。说到这可能很多朋友要笑话我,汽车要动起来当然需要汽油,这个还有什么可质疑的吗?没错!汽油对于我们来说是再普通不过的东西了,但是您真正了解汽油吗?或者我们再深入一步,您真正了解您的爱车应该加什么样的油吗?如果您还不是非常了解,希望我们今天这篇文章可以对您些帮助。 ● 不同标号汽油之间有何异同? 我们都知道汽油分为各种不同的标号,我们常见的有90#、93#、97#、98#等等,有个别地区还提供100#汽油,那么这些不同的标号是什么意思?其实它们所代表的就是不同的辛烷值,标号越高辛烷值越高,表示汽油的抗爆性也就越好。那么这里我们就引伸出一个名词:辛烷值。 ◆什么是辛烷值? 辛烷值就是代表汽油抗爆震燃烧能力的一个数值,越高抗爆性越好,那么这个值是怎么来的? 简单来说就是将实际的汽油与一种人工混合而成的标准燃料相比较得出的数值,标准燃料有两种组成部分,一个是抗爆性非常好的异辛烷,一个是抗爆性很差的正庚烷,把异辛烷的数值设定为100,而正庚烷的数值设定为0,通过实验调节标准汽油两种混合物的比例,达到和实际汽油相同的抗爆性,而这个比例就是我们所说的辛烷值了。举个例子,比如我们常用的93#汽油的辛烷值为93,它就代表与含异辛烷93%、正庚烷7%的标准汽油具有相同的抗爆性,以此类推97#汽油就是和含异辛烷97#的标准汽油抗爆性相同。 那为什么,石油公司会老要我们用高标号的汽油呢?关键就在生产成本上。在中国,实际上根本没有多少(可以说没有)石油公司是使用多次裂解法来生产高标号汽油的,而是使用一些低成本的小伎俩来解决问题!以前,是在低标号的汽油中添加少量的四乙基铅来明显提高汽油的抗爆震性,后来由于污染过于严重,因此被国家明令禁止。那么,他们就改用了含锰的添加剂MMT(这种添加剂至少在欧洲早已被禁止使用),起着与四乙基铅完全同样的作用。 然而,在出厂油价上却是按照多次裂解法计算的,也就是说,所谓90,93,95,97 等标号的汽油,不过是加入不同数量的含锰添加剂的产品而已,他们之间真正的成本差别仅在几分钱到二三毛钱,而它们在零售价上的差别……你们自己清楚。也就是说,它们卖90号汽油越多,赚到的钱越少;而卖高标号的汽油越多,则利润就会番倍地上升,所以,就会有越来越多的加油站贴出告示说没有90号汽油卖了。

车用汽油(GB-17930-2013)

前言 本标准全文强制。 本标准依据GB/T 1.1—2009给出的规则起草。 本标准代替DB 31/427—2009《车用汽油》。DB 31/427—2009《车用汽油》自本标准实施之日起废止。 本标准与DB 31/427—2009相比主要变化如下: ——增加了正文首页的“警告”内容; ——将“本标准规定了由液体烃类和由液体烃类及改善使用性能的添加剂组成的车用汽油的要求和试验方法、取样及标志、包装、运输和贮存”修改为“本标准规定了车用汽油的术语和定义、产品分类、、技术要求和试验方法、取样、标志、包装、运输和贮存、安全”; ——增加第3章“术语和定义”; ——将第4章产品分类修改为“车用汽油按研究法辛烷值分为89号、92号和95号三个牌号”; ——增加5.1 车用汽油中所使用的添加剂应无公认的有害作用,并按推荐的适宜用量使用。车用汽油中不应含有任何可导致汽车无法正常运行的添加物和污染物。车用汽油中不得人为加入含氯、含磷、含硅的化合物;不应含有自塑料、橡胶、电路板裂解而来的组分; ——车用汽油牌号由“90号,93号,97号”修改为89号,92号,95号; ——修改研究法辛烷值(RON)为“不小于89、92、95”; ——修改抗爆指数为“不小于84、87、90”; ——修改硫含量为“不大于10(mg/kg)”; ——修改锰含量为“不大于0.002(g/L)”; ——修改蒸气压为“45~85、42~65(kPa)”; ——将实际胶质修改为“溶剂洗胶质含量”,限值不变;

——增加“未洗胶质含量(加入清净剂前);mg/100mL不大于30”; ——硫含量分析方法删除ASTM D7039,增加NB/SH/T 0842; ——增加“氧含量允许用SH/T 0720方法测定,在有异议时,以SH/T 0663方法测定结果为准”; ——将“包装、标志、运输、贮存”修改为第7章“包装、运输和贮存”,内容修改为“根据GB 13690,车用汽油属于易燃液体,产品的安全标志、包装、运输、贮存及交货验收按SH 0164、GB 13690和GB 190进行。” ——增加第8章根据GB13690,车用汽油属于易燃液体,其危险性警示见GB 20581-2006中第8章的警示性说明; 本标准由上海市环境保护局、上海市质量技术监督局、上海市经济和信息化委员会提出。 本标准由上海市化学标准化技术委员会归口。 本标准起草单位:中国石化上海石油化工研究院、中国石化上海高桥分公司、中国石化上海石油化工股份有限公司、上海市机动车检测中心、上海市质量监督检验技术研究院、上海市环境科学研究院、中国石化上海石油分公司、中国石油上海销售分公司、中海油销售上海公司。 本标准主要起草人:叶志良、林荣兴、陈洪德、全轶枫、施慧娟、黄成、沈贤、李新颖、李明亮、王川。 本标准于2009年首次发布,本次为第一次修订。 车用汽油 警告:如果不遵守适当的防范措施,本标准所属产品在生产、运输、装卸、贮运和使用等过程中可能存在危险。本标准无意对与本产品有关的所有安全问题提出建议。用户在使用本标准之前,有责任建立适当的安全和防范措施,并确定相关规章限制的适用性。 1 范围

相关文档
相关文档 最新文档