文档库 最新最全的文档下载
当前位置:文档库 › 高考物理总复习--物理生活中的圆周运动及解析

高考物理总复习--物理生活中的圆周运动及解析

高考物理总复习--物理生活中的圆周运动及解析

一、高中物理精讲专题测试生活中的圆周运动

1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:

(1)子弹射入小球的过程中产生的内能;

(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;

(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.

【答案】(1)2038mv (2) 2

164mv mg R

+

(3)042v gR ≤或04582gR v gR ≤≤【解析】

本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111

422

Q mv mv =-⨯ 代入数值解得:2038

Q mv =

(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式

得2

11(3)(3)m m v F m m g R

+-+=

以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2

木板对水平面的压力的大小20

2164mv F mg R

=+

(3)小球不脱离圆形轨有两种可能性:

①若小球滑行的高度不超过圆形轨道半径R

由机械能守恒定律得:

()()211

332

m m v m m gR +≤+

解得:042v gR ≤

②若小球能通过圆形轨道的最高点

小球能通过最高点有:2

2

(3)(3)m m v m m g R

++≤

由机械能守恒定律得:

221211(3)2(3)(3)22

m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥

要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤

在最高点有:2

3

3(3)(3)m m v F m m g R

+++=

由机械能守恒定律得:221311(3)2(3)(3)22

m m v m m gR m m v +=+++ 解得:082v gR ≤

综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是

042v gR ≤或04582gR v gR ≤≤

2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)

(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;

(3)铁球运动到B 点时的速度大小是5m/s ;

(4)水平推力F 作用的时间是0.6s 。 【解析】 【详解】

(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D

mv mg R

=

可得:D /s v =

(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2C

mv F mg R

-=

代入数据可得:F =6.3N

由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N

(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2

y 2gh v = 得:v y =3m/s

小球沿切线进入圆弧轨道,则:3

5m/s 370.6

y B v v sin =

=

=︒

(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:

3750.84/A B v v cos m s =︒=⨯=

小球在水平面上做加速运动时:1F mg ma μ-=

可得:2

18/a m s =

小球做减速运动时:2mg ma μ=

可得:2

22/a m s =-

由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222

m m A v v v

x t t +=

⋅+⋅ 联立可得:0.6t s =

3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(3

32

R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).

(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;

(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.

【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)

(

)()

21221R d R ≤≤

【解析】 【分析】 【详解】

(1)当小球刚好通过最高点时应有:2D

mv mg R =

由机械能守恒可得:()22

D

mv mg h R -=

联立解得32h R =

,因为h 的取值范围为3

32

R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则

2D

mv F mg R ='+ ()22

D

mv mg h R ='- 联立并结合h 的取值范围

3

32

R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤

(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212

R gt =

min min D x v t =

联立解得min 2x R R =>,故能落在水平面BC 上,

当小球在最高点对轨道的压力为3mg 时,有:2max 3D

v mg mg m R

+=

解得max 2D v gR = 小球飞离D 后平抛2

12

R gt =

', max max D x v t ='

联立解得max 22x R =

故落点与B 点水平距离d 的范围为:

(

)()

21221R d R -≤≤-

4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方

2

R

处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:

(1)小球运动至B 点时的速度大小B v

(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.

【答案】(1)4?

/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】

试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.

(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2

B

N v F mg m R

-=

解得:4/B v m s =

(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:

21022f B R mg R W mv ⎛

⎫+-=- ⎪⎝⎭

解得:22f W J =

(3)由B 到C 的过程中,由动能定理得:221122

BC C B mgL mv mv μ-=- 解得:222B C BC

v v L g

μ-= 从C 点到落地的时间:020.8h

t s g

=

= B 到P 的水平距离:2202B C

C v v L v t g

μ-=

+ 代入数据,联立并整理可得:214445

C C L v v =-

+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m

【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.

5.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。重力加速度g =10m /s 2,忽略一切摩擦。求:

(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。

【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】

(1)杆静止时环受力平衡,有2T =mg 得:T =5N

(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,r

cos L r

θ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r

得53/rad s ω=

(3)绳断裂后,环做平抛运动,水平方向s =vt

竖直方向:212

H d gt -=

环做平抛的初速度:v =ωr

小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】

本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。

6.如图所示,半径为

4

l

,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .

(1)装置静止时,求小球受到的绳子的拉力大小T ;

(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?

【答案】(1)15

15

T mg = (2)①ω0=15215g l

②2g l ω≥【解析】 【详解】

(1)设轻绳a 与竖直杆的夹角为α

15cos 4

α=

对小球进行受力分析得

cos mg

T α

=

解得:

415

T mg =

(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。可知小球做圆周运动的半径为

r=

4

l 2

0tan mg m r αω=

解得:

ω0=152

15g l

②轻绳b 刚伸直时,轻绳a 与竖直杆的夹角为60°,可知小球做圆周运动的半径为

sin60r l '=︒

2tan 60mg m r ω'︒=

解得:

ω=

2g l 轻绳b 伸直时,竖直杆的角速度

2g l

ω≥

7.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:

(1)弹簧开始时的弹性势能.

(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小.

【答案】(1)3mgR (2)0.5mgR (3)5

2 mgR

【解析】

试题分析:(1)物块到达B点瞬间,根据向心力公式有:

解得:

弹簧对物块的弹力做的功等于物块获得的动能,所以有

(2)物块恰能到达C点,重力提供向心力,根据向心力公式有:

所以:

物块从B运动到C,根据动能定理有:

解得:

(3)从C点落回水平面,机械能守恒,则:

考点:本题考查向心力,动能定理,机械能守恒定律

点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.

8.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、

L=60cm的直轨道AB与半径R=10cm的光滑圆弧轨道BCDEF在B处平滑连接,C、F为圆轨道最低点,D点与圆心等高,E为圆轨道最高点;圆轨道在F点与水平轨道FG平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m=50g的滑块(可视为质点)从A 端由静止释放.已知滑块与AB段的动摩擦因数μ1=0.25,与FG段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.

(1) 求滑块到达E 点时对轨道的压力大小F N ;

(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;

(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s . 【答案】(1)F N =0.1N (2)x =0.52m (3)93

m 160

s = 【解析】 【详解】

(1)滑块从A 到E ,由动能定理得:

()]2

11sin 1cos 2cos 2

E mg L R R mgL mv θθμθ⎡+---=

代入数据得:E v =

滑块到达E 点:2N E

v mg F m R

+= 代入已知得:F N =0.1N

(2)滑块从A 下滑到停在水平轨道FG 上,有

()12sin 1cos cos 0mg L R mgL mgx θθμθμ⎡⎤+---=⎣⎦

代入已知得:x =0.52m

(3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:

010sin +(1cos )]cos 0mg L R R mgL θθμθ---=[

代入数据解得:L 0=0.2m

从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:

()()01101sin cos 0mg L L mg L L θμθ--+=

解得:11001sin cos 1

sin cos 2

L L L θμθθμθ-=

=+

同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:

2

121101sin cos 11sin cos 22L L L L θμθθμθ-⎛⎫

=== ⎪+⎝⎭

故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有: 5

5012L L ⎛⎫= ⎪⎝⎭

所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程

012345932222m 160

L L L L L L s =+++++=

9.如图所示,竖直平面内固定有一半径R =1m 的

1

4

光滑圆轨道AB 和一倾角为45°且高

为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .

(1)若h =0,求小球在B 点的速度大小;

(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)

(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少?

【答案】(1)25/m s (261m (3)1.25m

【解析】

【分析】

【详解】

(1)从释放小球至A 点根据速度与位移关系有

22A v gh =

在A 点,根据牛顿第二定律

21A N v F m R

= 在B 点,根据牛顿第二定律

22B N v F mg m R

-= 根据题意有

213N N F F mg -=

2()B v g R h =+若0h =,则小球在B 点的速度

1225m/s v gR ==;

(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向

0x t v =

竖直方向

212y H gt == 又因为斜面倾角为45°,则 x y =

解得

05m/s v =

对应的高度

00.25m h =

若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度

22()6m/s v g R h +==

小球做平抛运动竖直方向

212

H gt =

得 1t s =

则水平方向

126m x v t ==

故小球落地点距C 点的距离

22161m s x H =+=;

(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v =

则从C 点至挡板最高点过程中水平方向

3''x v t =

竖直方向

'2122

H y l gt =

-=' 又 2H x '=

解得

1.25m l =.

点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.

10.(2011年南通一模)如图所示,BCDG 是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场

中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.

(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?

(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;

(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.

【答案】(1) (2) (3)

【解析】

①由动能定理有:

② 当时,最小

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高考物理生活中的圆周运动易错剖析及解析

高考物理生活中的圆周运动易错剖析及解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8) (1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ; (2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。 【答案】(1)铁球运动到圆弧轨道最高点D 5; (2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ; (3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。 【解析】 【详解】 (1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D mv mg R = 可得:D 5m /s v = (2)小球在C 点受到的支持力与重力的合力提供向心力,则:2C mv F mg R -= 代入数据可得:F =6.3N 由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N (3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2 y 2gh v = 得:v y =3m/s 小球沿切线进入圆弧轨道,则:3 5m/s 370.6 y B v v sin = = =? (4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:

物理生活中的圆周运动专项习题及答案解析及解析

物理生活中的圆周运动专项习题及答案解析及解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,

高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为0 45的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为 1m kg =,210/g m s =,求: (1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】 (1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离; (2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】 (1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s 水平分速度v x =v y tan450=10m/s 则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点 N B +mg=m 2 v R 解得 N B =50N 根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】 该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析. 2.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半

高中物理 专题5.7 生活中的圆周运动(讲)(基础版)(含解析)

5.7 生活中的圆周运动 ※知识点一、火车转弯问题 1.火车车轮的特点 火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示。 2.火车弯道的特点 弯道处外轨高于内轨,火车在行驶过程中,重心高度不变,即火车的重心轨迹在同一水平面内,火车的向心加速度和向心力均沿水平面指向圆心。 3.火车转弯的向心力来源 火车速度合适时,火车只受重力和支持力作用,火车转弯时所需的向心力完全由支持力和重力的合力来提供。如图所示。 4.轨道轮缘压力与火车速度的关系 (1)当火车行驶速率v等于规定速度v0时,内、外轨道对轮缘都没有侧压力。 (2)当火车行驶速度v大于规定速度v0时,火车有离心运动趋势,故外轨道对轮缘有侧压力。 (3)当火车行驶速度v小于规定速度v0时,火车有向心运动趋势,故内轨道对轮缘有侧压力。★特别提醒: 汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车受到的重力和支持力的合力提供向心力,以减小车轮与路面之间的横向摩擦力。 ★思考与讨论 1、火车转弯时的运动是圆周运动,分析火车的运动回答下列问题: (1)如果轨道是水平的,火车转弯时受到哪些力的作用?需要的向心力由谁来提供? (2)靠这种方式迫使火车转弯有哪些危害?如何改进? 提示: (1)火车受重力、支持力和外轨对火车的弹力,弹力提供火车转弯所需的向心力. (2)由于火车质量很大,转弯时需要的向心力很大,容易造成对外轨的损坏,同时造成火车脱轨.可以把弯道处建成外高内低的斜面,由重力和支撑力的合力提供合心力. 2、如图为火车在转弯时的受力分析图,试根据图讨论以下问题: (1)设斜面倾角为θ,转弯半径为R,当火车的速度为多大时铁轨和轮缘间没有弹力,向心力完全由重力与支持力的合力提供? (2)当火车行驶速度v>v0=gR tan θ时,轮缘受哪个轨道的压力?当火车行驶速度v

高中物理生活中的圆周运动(一)解题方法和技巧及练习题及解析

高中物理生活中的圆周运动(一)解题方法和技巧及练习题及解析 一、高中物理精讲专题测试生活中的圆周运动 1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求: (1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功; (3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】 (1)根据机械能守恒定律 E p =211m ?2 v ① v 12Ep m =7m/s ② (2)由动能定理得-mg ·2R -W f = 22 211122 mv mv - ③ 小球恰能通过最高点,故22 v mg m R = ④ 由②③④得W f =24 J (3)根据动能定理: 2 2122 k mg R E mv =- 解得:25k E J = 故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】 (1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v; (2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小

高中物理生活中的圆周运动题20套(带答案)含解析

高中物理生活中的圆周运动题20套(带答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,高为 L 的倾斜直轨道 AB 、CD 与水平面的夹角均为53°,分别与竖直平面内的光滑圆弧轨道相切于 B 、D 两点,圆弧的半径也为 L 。质量为m 的小滑块从A 点由静止下滑后,经轨道 CD 后返回,再次冲上轨道AB 至速度为零时,相对于水平线BD 的高度为 6 L 。已知滑块与轨道AB 间的动摩擦因数μ1=0.5,重力加速度为g ,(取sin530.8cos530.6︒︒==,)求: (1)求滑块第一次经过 B 点的速度大小; (2)滑块第一次经过圆弧轨道最低点时对轨道的压力大小; (3)滑块与轨道 CD 间的动摩擦因数μ2。 【答案】(15gL (2)6120mg (3)276123μ= 【解析】 【详解】 (1)A B →由动能定理:2 11(cos53)0sin 532 B L mgL mg mv μ-⋅ =-o o 1 2 554B gL gL v ⎛⎫ == ⎪ ⎝⎭ (2)B 到最低点由动能定理得:2211(1cos53)22 B mgL mv mv -= -o 在最低点由牛顿第二定律得:2 v N mg m L -= 6120 N mg = 所以,对轨道的压力为 61 20 mg (3)从B 到CD 斜面的最高点由动能定理得: ()2 21sin 53cos5302 B mg mg x mv μ︒︒-+=- 从CD 斜面最高点到停止位置由动能定理得:

211(sin 53cos53)(sin 53cos53) 006sin 53L mg mg x mg mg o o o o o μμ--+⋅=- 276123 μ= 2.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2. (1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小; (3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】 (1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 1 2 =m 0v 02 代入数据解得:v 0=4m/s , 对小球,由牛顿第二定律得:F ﹣m 0g =m 020 v l 代入数据解得:F =30N (2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:2 12 C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s 小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s (3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力

(物理)物理生活中的圆周运动试题类型及其解题技巧及解析

(物理)物理生活中的圆周运动试题类型及其解题技巧及解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点 平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方 2 R 处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求: (1)小球运动至B 点时的速度大小B v (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大. 【答案】(1)4? /B v m s = (2)22?f W J = (3) 3.36L m = 【解析】 试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度. (1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2 B N v F mg m R -= 解得:4/B v m s = (2)从O '到B 的过程中重力和阻力做功,由动能定理可得: 21022f B R mg R W mv ⎛ ⎫+-=- ⎪⎝⎭ 解得:22f W J = (3)由B 到C 的过程中,由动能定理得:221122 BC C B mgL mv mv μ-=- 解得:22 2B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g = =

高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,带有1 4 光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于 木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少? (2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少? 【答案】(1)023v gR =(2)123gR v =253gR v =【解析】 本题考查动量守恒与机械能相结合的问题. (1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由 02mv mu =,解得0 2 v u = C 滑到最高点的过程: 023mv mu mu +=' 2220111 23222 mv mu mu mgR +⋅=+'⋅ 解得023v gR = (2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+ 22220121111222222 mv mu mv mv +⋅=+⋅ 解得:123gR v = 253gR v = 2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(3 32 R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).

高中物理生活中的圆周运动专项训练100(附答案)含解析

高中物理生活中的圆周运动专项训练100(附答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度; (3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离. 【答案】(1)线断裂的瞬间,线的拉力为45N; (2)线断裂时小球运动的线速度为5m/s; (3)落地点离桌面边缘的水平距离2m. 【解析】 【分析】 【详解】 (1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有: F N=F=mω2R, 设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有: F1:F0=ω2: 2 =9:1, 又F1=F0+40N, 所以F0=5N,线断时有:F1=45N. (2)设线断时小球的线速度大小为v,由F1= 2 v m R , 代入数据得:v=5m/s.

(3)由平抛运动规律得小球在空中运动的时间为:t =220.8 10 h s g ⨯ ==0.4s, 则落地点离桌面的水平距离为:x=vt=5×0.4=2m. 2.如图所示,一质量M=4kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,BC与CD相切于C,圆弧BC所对圆心角θ=37°,圆弧半径R=2.25m,滑动摩擦因数μ=0.48。质量m=1kg的小物块从某一高度处的A点以v0=4m/s的速度水平抛出,恰好沿切线方向自B点进入圆弧轨道,最终与小车保持相对静止。取g=10m/s2,sin37°=0.6,忽略空气阻力,求: (1)A、B间的水平距离; (2)物块通过C点时,轨道对物体的支持力; (3)物块与小车因摩擦产生的热量。 【答案】(1)1.2m(2)25.1 N F N =(3)13.6J 【解析】 【详解】 (1)物块从A到B由平抛运动的规律得: tanθ= gt v x= v0t 得x=1.2m (2)物块在B点时,由平抛运动的规律得:0 cos B v v θ = 物块在小车上BC段滑动过程中,由动能定理得:mgR(1-cosθ)= 1 2 mv C2- 1 2 mv B2 在C点对滑块由牛顿第二定律得 2 C N v F mg m R -= 联立以上各式解得:25.1 N F N = (3)根据牛顿第二定律,对滑块有μmg=ma1, 对小车有μmg=Ma2

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 2.如图所示,BC 为半径r 2 25 = m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求 (1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ; (3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ). 【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3 时, 22111 ()22A A m v m M v -+ 【解析】 【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ; (3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】 (1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律: 0=A A B B m v m v - 由能量关系:22 11=22 P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s (2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R = 由机械能守恒定律:22d 11=222 B B B B m v m v m g R +⋅ 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律: =()A A A m v m M v +由能量关系:()2 211122 A A A A m gL m v m M v μ= -+ 解得μ1=0.2

高中物理生活中的圆周运动解题技巧及练习题及解析

高中物理生活中的圆周运动解题技巧及练习题及解析 一、高中物理精讲专题测试生活中的圆周运动 1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求: (1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ; (3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】 (1)物块从A 到B 运动过程中,根据动能定理得:22101122 B mgL mv mv μ-=- 解得:11/B v m s = (2)物块从B 到C 运动过程中,根据机械能守恒得:22 11·222 B C mv mv mg R =+ 解得:9/C v m s = (3)物块从B 到D 运动过程中,根据动能定理得:2 2102 B mgL mv μ-=- 解得:230.25L m = 对整个过程,由能量守恒定律有:2 0102 Q mv =- 解得:Q=72J 【点睛】 选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义. 2.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-⋅= 解得42 14 μ-= 2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为 0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为 10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦 力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转 盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取2 10m/s .求: (1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度; (3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象. 【答案】(1)12/rad s ω= (2)222/rad s ω= (3)22 52/m rad s ω= 【解析】

高考物理生活中的圆周运动试题(有答案和解析)及解析

高考物理生活中的圆周运动试题( 有答案和分析 ) 及分析 一、高中物理精讲专题测试生活中的圆周运动 1.如下图,在竖直平面内有一绝缘“ ”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点 x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ ,电场力 Eq=3mg/4,重力加快度为 1=0.25、μ2=0.80 g, sin37 =0°.6, cos37 °=0.8.求: (1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大; (2)小球初速度 v0知足什么条件能够运动过 C 点; (3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多 大. 【答案】( 1)5.5mg( 2)v04gR (3) 44R 【分析】 【剖析】 【详解】 (1)加快到 B 点:-1mgx qEx 1 mv21 mv02 22在 B 点:N mg m v2 R 解得 N=5.5mg (2)在物理最高点 qE F:tan mg 解得α=370;过 F 点的临界条件: v F=0 从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01 mv02 2 解得 v04gR

可见要过 C 点的条件为: v 0 4 gR (3)因为 x=4R<5.75R ,从开始到 F 点战胜摩擦力、战胜电场力做功均小于( 2)问,到 F 点时速度不为零,假定过 C 点后行进 x 1 速度变成零,在 CD 杆上因为电场力小于摩擦力, 小球速度减为零后不会返回,则: - 1mgx 2 mgx 1-qE( x-x 1 ) mg 2R 0 1 mv 02 2 s x R x 1 解得: s (44)R 2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道 AB 和水平直轨道 BC 在 B 点 光滑连结而成.现有一质量为 m 1Kg 的小球从 A 点正上方 R 处的 O 点由静止开释,小 2 球经过圆弧上的 B 点时,轨道对小球的支持力大小 F N 18 N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P 点 .已知 B 点与地面间的高度 h 3.2m ,小球与 BC 段轨道间的动 摩擦因数 0.2 ,小球运动过程中可视为质点 . ( 不计空气阻力, g 取 10 m/s 2). 求: (1)小球运动至 B 点时的速度大小 v B (2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f (3)水平轨道 BC 的长度 L 多大时,小球落点 P 与 B 点的水平距最大. 【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m 【分析】 试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点 的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合 平抛运动的公式,即可求出为使小球落点 P 与 B 点的水平距离最大时 BC 段的长度 . (1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有 : F N mg m v B 2 R 解得: v B 4m / s (2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得: mg R R W f 1 mv B 2 2 2

高考物理试卷分类汇编物理生活中的圆周运动(及答案)及解析

高考物理试卷分类汇编物理生活中的圆周运动( 及答案 ) 及分析 一、高中物理精讲专题测试生活中的圆周运动 1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴 O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω多大时,物体 A 开始滑动? (2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】( 1)g 3mgl ( 2) 4 mg l kl 【分析】 【剖析】 (1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转 速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定 律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供 给向心力. (1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则 有: μmg= mlω02, 解得:ω0=g . l 即当ω0 g 时物体 A 开始滑动.=l (2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12, r=l+△x 解得: Vx= 3 mgl kl 4 mg 【点睛】 当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题 重点是剖析物体的受力状况.

高考物理生活中的圆周运动真题汇编(含答案)含解析

高考物理生活中的圆周运动真题汇编(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.已知某半径与地球相等的星球的第一宇宙速度是地球的 1 2 倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求: (1)星球表面的重力加速度? (2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力? 【答案】(1)01=4g g 星 (2)0 024 g s v H L = -201[1]42()s T mg H L L =+ - 【解析】 【分析】 【详解】

相关文档
相关文档 最新文档