文档库 最新最全的文档下载
当前位置:文档库 › 生活中的圆周运动---习题及答案

生活中的圆周运动---习题及答案

高一物理第五章第7节

生活中的圆周运动

1.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,

爆胎可能性最大的地段应是〔 〕

A .a 处

B .b 处

C .c 处

D .d 处 2.一汽车通过拱形桥顶点时速度为10 m/s,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为〔 〕

A .15 m/s

B .20 m/s

C .25 m/s

D .30 m/s

3.在水平铁路转弯处,往往使外轨略高于内轨,这是为了〔 〕

A .减轻火车轮子挤压外轨

B .减轻火车轮子挤压内轨

C .使火车车身倾斜,利用重力和支持力的合力提供转弯所需向心力

D .限制火车向外脱轨

4.铁路转弯处的圆弧半径为R ,内侧和外侧的高度差为h ,L 为两轨间的距离,且L >h ,如果列车转弯速率大于L Rgh /,则〔 〕

A .外侧铁轨与轮缘间产生挤压

B .铁轨与轮缘间无挤压

C .内侧铁轨与轮缘间产生挤压

D .内外铁轨与轮缘间均有挤压

5.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进入容器后靠筒壁站立,当圆筒开始转动,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为〔 〕

A .游客受到的筒壁的作用力垂直于筒壁

B .游客处于失重状态

C .游客受到的摩擦力等于重力

D .游客随着转速的增大有沿壁向上滑动的趋势

6.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的X 力之差是〔 〕

A .6mg

B .5mg

C .4mg

D .2mg

7.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须〔 〕

A .减为原来的1/2倍

B .减为原来的1/4倍

C .增为原来的2倍

D .增为原来的4倍

8.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 < >

〔第1题〕

A .水处于失重状态,不受重力的作用了

B .水受平衡力作用,合力为0

C .水受的合力提供向心力,使水做圆周运动

D .杯子特殊,杯底对水有吸力

9.下列说法中,正确的是 < >

A .物体做离心运动时,将离圆心越来越远

B .物体做离心运动时,其运动轨迹一定是直线

C .做离心运动的物体,一定不受到外力的作用

D .做匀速圆周运动的物体,因受合力大小改变而不做圆周运动时,将做离心运动

10.乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是〔 〕

A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来

B .人在最高点时对座仍可能产生压力,但压力一定小于mg

C .人在最低点时对座位的压力等于mg

D .人在最低点时对座位的压力大于mg

11.关于离心运动,下列说法中正确的是 < >

A .物体一直不受外力的作用时,可能做离心运动

B .做匀速圆周运动的物体,在外界提供的向心力突然变大时做离心运动

C .做匀速圆周运动的物体,只要向心力的数值发生变化就将做离心运动

D .做匀速圆周运动的物体,当外界提供的向心力突然消失或数值变小时将做离心运动

12.把盛水的水桶拴在长为L 的绳子一端,使水桶在竖直平面做圆周运动,要使水在水桶转到最高点时不从水桶里流出来,这时水桶的线速度至少应该是< >

13.如图所示,用长为l 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则下列说法中正确的是< >

A .小球在圆周最高点时所受的向心力一定为重力

B .小球在最高点时绳子的拉力不可能为零

C .若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为gL

D .小球过最低点时绳子的拉力一定大于小球重力

14.如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正

确的有

A .小球通过最高点的最小速度为v Rg

B .小球通过最高点的最小速度为0

C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力

D .小球在水平线曲以上管道中运动时,内侧管壁对小球一定有作用力

15.在摩托车沿水平圆形弯道匀速转弯时,人和车应向弯道的侧倾斜,人和车这时受到__________、___________、________三个力的作用,并且这三个力的合力提供人和车做匀速〔第13题〕 〔第14题〕

圆周运动的.

16.一辆汽车匀速通过一座圆形拱桥后,接着又匀速通过圆弧形凹地.设圆弧半径相等,汽车通过桥顶A 时,对桥面的压力N A 为车重的一半,汽车在弧形地最低点B 时,对地面的压力为N B ,则N A :N B 为

17.长L =0.5 m 、质量可忽略的杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点做竖直平面内的圆周运动,当通过最高点时,如图所示,求下列情况下小球所受到的力〔计算出大小,并说明是拉力还是支持力〕.

〔1〕当v =1 m/s 时,大小为N,是力

〔2〕当v =4 m/s 时,大小为N,是力

18.如图所示,汽车在倾斜的弯道上拐弯,弯道的倾角为θ,半径为r ,则汽车完全不靠摩擦力转弯的速率是

19.车以一定

的速度在宽阔的马路上匀速行驶,司机突然发现正

前方有一墙,把马路全部堵死,为了避免与墙相碰,司机是急刹车好,还是马上转弯好?试定量分析说明道理.

20.如图所示,一粗糙水平圆盘可绕过中心轴OO ′旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A,设弹簧劲度系数为k ,弹簧原长为L.将物块置于离圆心R 处,R >L,圆盘不动,物块保持静止.现使圆盘从静止开始转动,并使转速ω逐渐增大,物块A 相对圆盘始终未动.当ω增大到()54k R l mR ω-=

时,物块A 是否受到圆盘的静摩擦力,如果受到静摩擦力,试确定其方向.

21.如图所

示,AB 为竖直转轴,细绳AC

和BC 的结点C 系一质量为m

的小球,两绳能承担的最大拉力均为2mg,当AC 和BC 均拉直时∠ABC=90°,∠ACB=53°,ABC 能绕竖直轴AB 匀速转动,

因而C 球在水平面内做匀速圆周运动,求:

<1>当m 的线速度增大时,AC 和BC哪条绳先断?

<2>一条绳被拉断后,m 的速率继续增加,整个运动状态会发生什么变化?

22.一个圆盘边缘系一根细绳,绳的下端拴一个质量为m 的小球,圆盘的半径为r ,绳长为L ,圆盘匀速转动时小球随着圆盘一起转动,并且绳与竖直方向成θ角,如图所示.求圆盘的转速是多大?

习题5-3-2答案

1 2 3 4 5 6 7 8

9 10 11 12 13 14

〔第21题〕 O O R 〔第20题〕 〔第17题〕 〔第18题〕 〔第22题〕

15.内,重力,弹力,静摩擦力,向心力 16.1:3 17.〔1〕16 ,支持 〔2〕44, 拉 18.θtan gr

19.司机应紧急刹车好 20.物块所受静摩擦力指向圆心,大小为)(41

l R k -. 21.<1>BC

先断<2>详参点拨<点拨:当小球线速度增大到BC 被拉直时,AC 线拉力T AC =1.25mg,当球速再增大些时T AC 不变,BC 线拉力随球速增大而增大,而v≥5.19m /s 时,BC 线先断;<2>当BC 线断后,AC 线与竖直方向夹角α因离心运动而增大,同时球速因重力而减小,当使球速再增大时,角α随球速增大而增大,当α=60°时,T AC =2mg,AC 也断,此时球速v '=4.95m/s>

22.θθ

πsin tan 21L r g +

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

生活中的圆周运动---习题及答案

高一物理第五章第7节 生活中的圆周运动 1.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎, 爆胎可能性最大的地段应是〔 〕 A .a 处 B .b 处 C .c 处 D .d 处 2.一汽车通过拱形桥顶点时速度为10 m/s,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为〔 〕 A .15 m/s B .20 m/s C .25 m/s D .30 m/s 3.在水平铁路转弯处,往往使外轨略高于内轨,这是为了〔 〕 A .减轻火车轮子挤压外轨 B .减轻火车轮子挤压内轨 C .使火车车身倾斜,利用重力和支持力的合力提供转弯所需向心力 D .限制火车向外脱轨 4.铁路转弯处的圆弧半径为R ,内侧和外侧的高度差为h ,L 为两轨间的距离,且L >h ,如果列车转弯速率大于L Rgh /,则〔 〕 A .外侧铁轨与轮缘间产生挤压 B .铁轨与轮缘间无挤压 C .内侧铁轨与轮缘间产生挤压 D .内外铁轨与轮缘间均有挤压 5.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进入容器后靠筒壁站立,当圆筒开始转动,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为〔 〕 A .游客受到的筒壁的作用力垂直于筒壁 B .游客处于失重状态 C .游客受到的摩擦力等于重力 D .游客随着转速的增大有沿壁向上滑动的趋势 6.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的X 力之差是〔 〕 A .6mg B .5mg C .4mg D .2mg 7.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须〔 〕 A .减为原来的1/2倍 B .减为原来的1/4倍 C .增为原来的2倍 D .增为原来的4倍 8.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 < > 〔第1题〕

高中物理生活中的圆周运动填空题专题训练含答案

高中物理生活中的圆周运动填空题专题训练含答案 姓名:__________ 班级:__________考号:__________ 一、填空题(共25题) 1、半径为r和R的圆柱体靠摩擦传动,已知R=2r,A、B分别在圆柱的边缘上,O2C=r ,如图所示,若两圆柱之间没有打滑现象,则v A:v B:v C= ,ωA:ωB:ωC= _。 2、汽车沿半径为R的圆跑道行驶,跑道路面水平,与路面作用的摩擦力的最大值是车重的0.1倍,要使汽车不致冲出跑道,车速最大不能超过。如果汽车是做匀速圆周运动,在转半圈的过程中路面作用的静摩擦力对汽车做功值为。(g=10m/s2) 3、细绳一端系上盛水的小桶,另一端拿在手中,现使小桶在竖直平面内做圆周运动.已知绳长为L,要使桶在最高点时水不流出,则此时水桶角速度的最小值应是。 4、质量为2000kg的汽车以20m/s的速率驶过一座圆弧形拱桥,桥顶一段的圆弧半径为100m,则汽车过桥顶时对桥顶的压力为N;要使汽车通过桥顶时对桥顶的压力为车重的0.9倍,则汽车过桥顶时的速度应为m/s。(g取10m/s2) =4.0cm,与脚踏板相连的大齿轮5、如图为自行车局部示意图,自行车后轮的小齿轮半径R 1 的半径R =10.0cm。则小齿轮边缘处A点的线速度与大齿轮边缘B点的线速度之比 2 = ,小齿轮的角速度和大齿轮的角速度之比=

6、汽车沿半径为25m的圆跑道行驶,设跑道的路面是水平的,路面作用于车的摩擦力的最大值是车重的,要使汽车不致冲出圆跑道,车速最大不能超过 m/s.(g取10m/s2) 7、质量相等的两汽车以相同的速度v分别通过半径为R的凸形桥顶P与凹形桥底P′时两桥面所受的压力之比为F P∶F P′=____▲____。 8、如图所示,在水平桌面上用长为的硬杆,通过长度为的细线栓着质量为的小球。现在让杆绕圆心一端匀速转动,达到稳定时细线与硬杆垂直,小球也做匀速圆周运动。若小球与水平桌面的动摩擦因数为,则小球所受摩擦力方向为,小球受到细线对它的拉力大小为。 9、在一段半径为R=15m的圆弧形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的0.5倍,则汽车顺利拐弯时的最大速度是_________m/s(g取10m/s2) 10、在一段半径为R=15m的圆弧形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的0.5倍,则汽车顺利拐弯时的最大速度是_________m/s(g取10m/s2) 11、在一段半径为R=15m的圆弧形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的0.5倍,则汽车顺利拐弯时的最大速度是_________m/s(g取10m/s2) 12、如图所示为一圆拱桥,最高点的半径为40m。一辆质量为1.2×103kg的小车,以10m/s的速度经过拱桥的最高点。此时车对桥顶部的压力大小为_________N;当过最高点的车速等于_________m/s时,车对桥面的压力恰好为零。(取g=10m/s2) 13、在火车转弯处,外轨略高于内轨,使路面向圆心一侧倾斜一个很小的角度θ.设拐弯路段是半径为R的圆弧,要使车轮与轨道之间无侧向压力,则火车经过弯道的速度= 。

物理生活中的圆周运动题20套(带答案)

物理生活中的圆周运动题20套(带答案) 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =

高考物理生活中的圆周运动题20套(带答案)

高考物理生活中的圆周运动题20套(带答案) 一、高中物理精讲专题测试生活中的圆周运动 1.已知某半径与地球相等的星球的第一宇宙速度是地球的 1 2 倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求: (1)星球表面的重力加速度? (2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力? 【答案】(1)01=4g g 星 (2)0 024 g s v H L = -201[1]42()s T mg H L L =+ - 【解析】 【分析】 【详解】 (1)由万有引力等于向心力可知2 2Mm v G m R R = 2Mm G mg R = 可得2 v g R = 则014 g g 星= (2)由平抛运动的规律:21 2 H L g t -= 星 0s v t = 解得0 024g s v H L = - (3)由牛顿定律,在最低点时:2 v T mg m L -星=

解得:2 01142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦ 【点睛】 本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键. 2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求: (1)滑块A 在半圆轨道最高点对轨道的压力; (2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能; (3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内 【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】 (1)A 从轨道最低点到轨道最高点由机械能守恒定律得: 2211222 A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律: 2 A N A v m g F m R += 滑块在半圆轨道最高点受到的压力为: F N =1N 由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律: A A B B m v m v = 解得:v B =3m/s

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-⋅= 解得42 14 μ-= 2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为 0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为 10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦 力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转 盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取2 10m/s .求: (1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度; (3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象. 【答案】(1)12/rad s ω= (2)222/rad s ω= (3)22 52/m rad s ω= 【解析】

【物理】物理生活中的圆周运动练习题20篇含解析

【物理】物理生活中的圆周运动练习题20篇含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 , 重力加速度 .求: (1)滑块通过C 点时的速度大小; (2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3) 【解析】 【详解】 (1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2

高考物理生活中的圆周运动答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8) (1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ; (2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。 【答案】(1)铁球运动到圆弧轨道最高点D 5; (2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ; (3)铁球运动到B 点时的速度大小是5m/s ;

(物理)物理生活中的圆周运动练习题及答案

(物理)物理生活中的圆周运动练习题及答案 一、高中物理精讲专题测试生活中的圆周运动 1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求: (1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功; (3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】 (1)根据机械能守恒定律 E p =211m ?2 v ① v 12Ep m =7m/s ② (2)由动能定理得-mg ·2R -W f = 22 211122 mv mv - ③ 小球恰能通过最高点,故22 v mg m R = ④ 由②③④得W f =24 J (3)根据动能定理: 2 2122 k mg R E mv =- 解得:25k E J = 故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】 (1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v; (2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小

生活中的圆周运动典型习题

生活中的圆周运动 一、选择题 1、如图所示,质量相等的A 、B 两物块放在匀速转动的水平圆盘上,随圆盘一起做匀速圆周运动,则下列关系中正确的是 A .它们所受的摩擦力 f A >f B B .它们的线速度V A

5、质量为M的物体,用细线通过光滑水平平板中央的光滑小孔,与质量为m1、m2的物体相连,如图所示,M做匀速圆周运动的半径为r1,线速度为v1,角速度为ω1。若将m1和m2之间的细线剪断,M仍做匀速圆周运动,其稳定后的半径为r2,线速度为v2,角速度为ω2,则下列关系正确的是() A.r2=r1,v2<v1B.r2>r1,ω2<ω1 C.r2<r1,ω2=ω1D.r2>r1,v2=v1 6、如图所示,是某课外研究小组设计的可以用来测量转盘转速的装置。该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小球穿在光滑细杆上与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动。当转盘不转动时,指针指在O处,当转盘转动的角速度为ω1时,指针指在A处,当转盘转动的角速度为ω2时,指针指在B处,设弹簧均没有超过弹性限度。则ω1与ω2的比值为() A. B. C. D. 7、如图所示,两段长均为L的轻质线共同系住一个质量为m的小球,另一端分别固定在等高的A、B两点,A、B两点间距也为L,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v,两段线中张力恰好均为零,若小球到达最高点时速率为2v,则此时每段线中张力大小为() A.mg B.2mg C.3mg D.4mg 8、雨天的野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”。如果将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,

(物理)物理生活中的圆周运动练习题含答案

(物理)物理生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,带有1 4 光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于 木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少? (2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少? 【答案】(1)023v gR =(2)123gR v =253gR v =【解析】 本题考查动量守恒与机械能相结合的问题. (1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由 02mv mu =,解得0 2 v u = C 滑到最高点的过程: 023mv mu mu +=' 2220111 23222 mv mu mu mgR +⋅=+'⋅ 解得023v gR = (2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+ 22220121111222222 mv mu mv mv +⋅=+⋅ 解得:123gR v = 253gR v = 2.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,圆弧BC 所对圆心角θ=37°,圆弧半径R =2.25m ,滑动摩擦因数μ=0.48。质量m =1kg 的小物块从某一高度处的A 点以v 0=4m/s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,最终与小车保持相对静止。取g =10m/s 2,sin37°=0.6,忽略空气阻力,求:

(物理)物理生活中的圆周运动练习题20篇

(物理)物理生活中的圆周运动练习题20篇 一、高中物理精讲专题测试生活中的圆周运动 1.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。重力加速度g =10m /s 2,忽略一切摩擦。求: (1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。 【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】 (1)杆静止时环受力平衡,有2T =mg 得:T =5N (2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,r cos L r θ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω= (3)绳断裂后,环做平抛运动,水平方向s =vt 竖直方向:2 12 H d gt -= 环做平抛的初速度:v =ωr 小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】 本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。 2.如图所示,在竖直平面内有一半径为R 的 1 4 光滑圆弧轨道AB ,与水平地面相切于B

点。现将AB 锁定,让质量为m 的小滑块P (视为质点)从A 点由静止释放沿轨道AB 滑下,最终停在地面上的C 点,C 、B 两点间的距离为2R .已知轨道AB 的质量为2m ,P 与B 点右侧地面间的动摩擦因数恒定,B 点左侧地面光滑,重力加速度大小为g ,空气阻力不计。 (1)求P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 以及P 与B 点右侧地面间的动摩擦因数μ; (2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,求: ①当P 刚滑到地面时,轨道AB 的位移大小x 1; ②Q 与A 点的高度差h 以及P 离开轨道AB 后到达C 点所用的时间t 。 【答案】(1)P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 为3mg ,P 与B 点右侧地面间的动摩擦因数μ为0.5;(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,①当P 刚滑到地面时,轨道AB 的位移大小x 1为3R ;②Q 与A 点的高度差h 为2 R ,P 离开轨道AB 后到达C 点所用的时间t 1326R g 【解析】 【详解】 (1)滑块从A 到B 过程机械能守恒,应用机械能守恒定律得:mgR = 2 12 B mv , 在B 点,由牛顿第二定律得:N -mg =m 2B v R , 解得:v B 2gR N =3mg , 滑块在BC 上滑行过程,由动能定理得:-μmg •2R =0-2 12 B mv , 代入数据解得:μ=0.5; (2)①滑块与轨道组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得: mv 1-2mv 2=0 m 1R x t -2m 1x t =0, 解得:x 1= 3 R ; ②滑块P 离开轨道AB 时的速度大小为v B ,P 与轨道AB 组成的系统在水平方向动量守恒,

高考物理高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-⋅= 解得42 14 μ-= 2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求: (1)质量为m 2的物块在D 点的速度; (2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点: (3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】 (1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为: v y 22100.45gR =⨯⨯m/s =3m/s y D v v =tan53°43 = 所以:v D =2.25m/s (2)物块在内轨道做圆周运动,在最高点有临界速度,则 mg =m 2 v R , 解得:v 32 gR = = m/s 物块到达P 的速度: 22 223 2.25P D y v v v =+=+=3.75m/s 若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:

人教版高中物理必修第二册第六章4生活中的圆周运动习题含答案

4 生活中的圆周运动 A 级 必备知识基础练 1.(2021河北邯郸高一检测)下列措施不属于防止离心现象造成危害的是( ) 2.已知某处弯道铁轨是一段圆弧,转弯半径为R ,重力加速度为g ,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为 ( ) A.√gRsinθ B.√gRcosθ C.√gRtanθ D.√gR 3.(2021江苏盐城月考)摆式列车是集计算机技术、自动控制等高新技术于一体的新型高速列车。当列车转弯时,在电脑控制下,车厢会自动倾斜;直线行驶时,车厢又恢复原状,实现高速行车,并能达到既安全又舒适的要求。假设有一高速列车在水平面内行驶,以180 km/h 的速度拐弯,由列车上的传感器测得一个质量为50 kg 的乘客在拐弯过程中所受合力为500 N,则列车的拐弯半径为( ) A .150 m B .200 m C .250 m D .300 m 4.一辆运输西瓜的汽车(可视为质点),以大小为v 的速度经过一座半径为R 的拱形桥。在桥的最高点,其中一个质量为m 的西瓜A (位置如图所示)受到周围的西瓜对它的作用力的大小为( ) A.mg B. mv 2 R C.mg-mv 2 R D.mg+mv 2 R 5.如图甲所示汽车进入弯道前都要进行必要的减速,可以简化为图乙所示的示意图,O 、M 两点分别为减速点和转向点,OM 为进入弯道前的平直公路,MN 段路面为水平圆弧形弯道。已知OM 段的距离为14 m,弯道的半径为24 m,汽车到达O 点时的速度大小为16 m/s,汽车与路面间的动摩擦因数为0.6。设最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2。要确保汽车进入弯道后不侧滑,则在弯道上行驶的最大速度的大小和在OM 段做匀减速运动的最小加速度的大小分别为( )

高中物理生活中的圆周运动专项训练100(附答案)含解析

高中物理生活中的圆周运动专项训练100(附答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度; (3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离. 【答案】(1)线断裂的瞬间,线的拉力为45N; (2)线断裂时小球运动的线速度为5m/s; (3)落地点离桌面边缘的水平距离2m. 【解析】 【分析】 【详解】 (1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有: F N=F=mω2R, 设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有: F1:F0=ω2: 2 =9:1, 又F1=F0+40N, 所以F0=5N,线断时有:F1=45N. (2)设线断时小球的线速度大小为v,由F1= 2 v m R , 代入数据得:v=5m/s.

(3)由平抛运动规律得小球在空中运动的时间为:t =220.8 10 h s g ⨯ ==0.4s, 则落地点离桌面的水平距离为:x=vt=5×0.4=2m. 2.如图所示,一质量M=4kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,BC与CD相切于C,圆弧BC所对圆心角θ=37°,圆弧半径R=2.25m,滑动摩擦因数μ=0.48。质量m=1kg的小物块从某一高度处的A点以v0=4m/s的速度水平抛出,恰好沿切线方向自B点进入圆弧轨道,最终与小车保持相对静止。取g=10m/s2,sin37°=0.6,忽略空气阻力,求: (1)A、B间的水平距离; (2)物块通过C点时,轨道对物体的支持力; (3)物块与小车因摩擦产生的热量。 【答案】(1)1.2m(2)25.1 N F N =(3)13.6J 【解析】 【详解】 (1)物块从A到B由平抛运动的规律得: tanθ= gt v x= v0t 得x=1.2m (2)物块在B点时,由平抛运动的规律得:0 cos B v v θ = 物块在小车上BC段滑动过程中,由动能定理得:mgR(1-cosθ)= 1 2 mv C2- 1 2 mv B2 在C点对滑块由牛顿第二定律得 2 C N v F mg m R -= 联立以上各式解得:25.1 N F N = (3)根据牛顿第二定律,对滑块有μmg=ma1, 对小车有μmg=Ma2

相关文档
相关文档 最新文档