文档库 最新最全的文档下载
当前位置:文档库 › LCD玻璃基板的基本要求及性能指标分析

LCD玻璃基板的基本要求及性能指标分析

LCD玻璃基板的基本要求及性能指标分析
LCD玻璃基板的基本要求及性能指标分析

LCD玻璃基板的基本要求及性能指标分析

液晶显示器(LCD)是在两个玻璃基片之间填充液晶介质,再加上一定形状的极化层,当电压通过导电栅网施加于液晶介质时,液晶介质起着光开关的作用,从而形成一定的图像。

一、各类LCD显示器对基板的要求

液晶(LC)及液晶显示器(LCD)研究的飞速发展带动了所需基

板的更新换代。LCD为有源显示器,依靠外部光源来显示。其基板需要两种不同的短阵.第一种是内部矩阵型,依靠液晶材料的阀值性质.第二是外部矩阵或有源矩阵(AM)型.由二极

管阵列、金属-绝缘体-金属(MIM)装置或薄膜晶体管汀兀)来

为每个像素电子转换。两层之间是厚度为5-101am的隔阻层。1968年美国RCA公司的Heilmeir使用向列型液晶的动态散射效应发明了液晶数字手表,开创了内部矩阵型液晶研究的新时代,1971年Schadt提出利用向列液晶的电场效应的扭曲向列液晶显示技术(TN LCD)。在此基础上,1983年,又

发明了超扭曲向列型液晶显示器(STN LCD)。其扭曲角为240°-270°,预倾角为5°-20°左右,后来又相继出现了非晶

硅的有源矩阵薄膜晶体管液晶显示器(a-Si AM TFT LCD)和

多晶硅的有源矩阵薄膜晶体管液晶显示器(p-Si AMTFT LCD)。

含有一硅阻隔层的钠钙硅玻璃完全可满足内部矩阵型LCD 的要求。在内部矩阵LCD中具有较高性能的超扭曲向列性(STN)中,为满足其间隙尺寸的大小一致,就要求基板格外平整。所以.应用于这种显示器时,钠钙硅玻璃就必须精密抛光。但精确成型的Corning7059玻璃则可以应用。

外部矩阵LCD可进一步细分为两种类型,一种是基于MIM 或非晶硅(a-Si)器件,另外一种是基于多晶硅(p-Si)器件。MIM 或非晶硅(a-Si)型对基板的要求和STN一致。Corning7059薄板玻璃由于钠含量较低(0.1wt%)、尺寸精确和具有商业可行性而成为较为理想的基板。但是,多晶硅(p-Si)器件的成型工艺温度比a-Si TFT要高。基板所需的工作温度为

600-800℃(在玻璃的应变点以下25℃)。准确的温度由生产TFT的特定工艺来确定。沉积控制介电质需600-650℃,热氧化物需大约800℃。a-Sj和p-Si工艺都要求和后续的工艺精确匹配,也都要求基板的热收缩要小。

在生产工艺中.由基板上的碱金属氧化物对TFT形成的钠污染应引起重视,通常的做法是在基板上覆盖一阻隔层来阻止碱金属的迁移。在这一点上值得注意的是碱含量近于零的非晶硅则可以应用,有对也称熔融硅或熔融石英。由于熔融硅的工作温度为965℃,集成电路工艺技术可以直接应用而不

需添加阻隔层。这种玻璃的主要问题是债格昂贵,不能用价格低廉的商用平板玻璃工艺制各。相反,它必须用浇铸、切割、细磨和抛光方法来制备。

由于各类LCD的性质和制备工艺不同,因此对基板的要求

也不同。

?

二、LCD基板的主要性质要求

除基板的三个主要性质,即尺寸的精确度、耐温性和热收缩性外。本节再添加另外的两个要求:无明显缺陷(包括内部和表面).在显示器生产中抗化学腐蚀性。本节将讨论在五个因

素和平板显示器的装配和性能的关系。

1、尺寸精密度

高性能显示器的装配包括多种的精确工艺。因此.基板的尺寸、形状和边界精度公差的数量级为0.1μm。在AM LCD中,对由扭曲产生的形变、表面租造度或厚度误差的要求的精度更高。这是因为狭缝空间(在两个显示基板之问的距离)在显示

器中的要求是十分严格的。如果玻璃的缺陷引起狭缝空间的局部变化,那么此地的电场将会同周围像素的电场发生偏离。这种电场偏离将会使最终的显示的灰度或色彩不一致。即使表面缺陷的大小在0.1 μ到几个毫微米,也会对显示效果产

生十分大的影响.诸如扭曲的较大的平整度形变现在可以用塑料微珠或混有液晶材料的玻璃棒来补偿狭缝空间以保证狭缝的宽度-狭缝宽度的形变只会发生在当基板变形幅度小到狭缝的另外一个基板也不能纠正到与之相匹配和保持两基板间的固定间距时发生。

板的平整度变形会在生产中产生另外的一个问题。由于照相平板印刷时不能在基板显示器上聚焦,因此会在显示电路中产生缺陷。如果印刷精度欠缺,扭曲的基板将会发生光掩蔽的危险。

平板玻璃基板产生有可能产生的平整度变形包括上至简单形变和整个基板的波浪性扭曲下到玻璃的纳米级的细微的分子粗造度整个范围.上述论述只是粗略描述了平整度形变的幅度是如何影响显示器的生产和性质,对基板表面形变和显示器性质的关系的更详尽的阐述是十分必要的。

2、热要求

耐温性和热收缩性,这两种热要求是有联系的。玻璃基板的刚度,即抗粘滞流动性。只是在热过程最高温度高于退火点时出现。但是.在温度接近玻璃的应力点时。如果玻璃冷却的过快,温度的差异就会使玻璃产生机械应力。基板的最高工作温度在低于应力点25℃以下将会在显示器制备过程中避免产生不可接受的基板应力。制备热弯曲的高温过程应十分小心以避免热开裂。

即使温度稍远低于应力点,基板也会由于体积松弛而发生尺寸改变。基板玻璃在制备中冷却到室温所达到的最终密度受玻璃在玻璃转变区域的冷却速度的影响。在显示器制备中。如果快速冷却的玻璃重新加热而在随后的热过程中以可使

玻璃结构充分驰豫的方式冷却,玻璃的密度将会增加。在显示器制备过程中线性尺寸的改变将导致照相平板印刷间的

不匹配.在显示器制备中对基板收缩的允许程度依赖于显示器.电路、显示器尺寸等性质。在AM LCD的情况下,这意

味着收缩不能高于在显示器最大尺寸方向上的最小元件(例

如布线间的宽度)的一部分。也就是说,在几百毫米上只有几个微米的收缩,即几个ppm。

实际应用的显示器基板玻璃的~些收缩数据已有报道。玻璃的体积驰豫现象在实验和理论两方面都有研究。在转变区域以下较远的区域的热收缩的理论研究还不够完全.其中,在ppm级范围内测定收缩是比较困难的。

为获得高的分辨率、大的显示尺寸的LCD显示器,对基板

的热收缩的良好控制是必需的。假定收缩是均匀的和线性的,可通过后续工艺的补偿来达到100ppm的热收缩。

?3、化学稳定性

由于玻璃经历许多步骤,显示器的制备工艺,特别是AM LCD 制备工艺的化学性质是最容易改变的。a-SiAM LCD液晶面板基板要加上七层或更多的薄膜,并且含有多次的刻蚀步骤。显示器基板的化学稳定性要求如下:各种刻蚀溶液都不能使显示器产生可见的残留物或干扰随后的薄膜沉积。在反应物对玻璃的较高的刻蚀速度的情况下(中或高的敏感性)。刻蚀

条件必需优化处理以避免对基板产生不必要的破坏。

关于7059玻璃和1733玻璃的化学稳定性的定量数据己有报道。在这些研究中可见,和含碱的玻璃的情形相似,酸首先将玻璃中非硅成分剥掉,形成一个富硅层。当高膨胀的薄膜应用在基板上时这种脆弱多孔的表面层会剥蚀掉。所以基板表面的化学性质的改变是显著的。这同时证明氟化物和基础反应物对玻璃基板的刻蚀都没有使表面出现可见的粗糙,这是对硅网络的侵蚀而不是对非硅组成的侵蚀。但是对于抛光的基板方面,由于玻璃表面的抛光损坏,均匀玻璃溶解也会使表面的粗糙度增加。因此,保持洁净度和使用化学蚀刻工艺来使粗糙度降至最小。

4、表面和内部缺陷

LCD液晶显示器在表面和内部缺陷方面必须有非常高的质量。在表面布置电路的基板必须避免擦伤或其他表面污染与小到几个毫米的缺陷来避免显示器线路的缺陷。Heumstic

提出诸如表面平行度的基板形状和基板的长度和宽度同等

重要。在缺少实验数据的情况下,显微镜下的基板缺陷仅仅是一种缺陷,当成为一种潜在的致命缺陷时才成为公开的缺陷。和其他对显示器基板的重要要求一样。这还没有成为数量化的、理论化的表面质量要求的标准。

内部缺陷,包括气体杂质和颗粒杂质,不影响显示器的生产。因此.可见性是一个简单的问题。只要杂质小于像素的某一部分,是可以接受的。一个可以接受的缺陷的极限大小为一个独立像素表面积的25%。因此像素为100的显示器的杂质尺寸极限为50pan。因此,到目前还缺少玻璃基板的尺寸、化学性质和缺陷级别的量化的理论。由于实际应用在不断的推进现代玻璃生产技术的发展。在LCD液晶显示器的商业化进程中这方面的努力是十分必要的。

2020年版《中国药典》通则调整—9101 药品质量标准分析方法验证指导原则

2020年版《中国药典》通则调整—9101 药品质量标准分析方法验证指导原则(蓝色字体表示新增内容,红色字体表示删减内容) 药品质量标准分析方法验证(analytical method validation)的目的是证明采用建立的方法适合于相应检测要求。在建立药品质量标准时,分析方法需经验证;在药品生产工艺变更、制剂的组分变更、原分析方法进行修订时,则质量标准分析方法也需进行验证。在建立药品质量标准、变更药品生产工艺或制剂组分、修订原分析方法时,需对分析方法进行验证。 质量控制中采用的方法包括理化分析方法和生物学测定方法,其中理化分析方法的验证原则与化学药品基本相同,所以可参照本指导原则进行,但在进行具体验证时还需要结合生物制品的特点考虑;相对于理化分析方法而言,生物学测定方法存在更多的影响因素,因此本指导原则不涉及生物学测定方法验证的内容。 验证的分析项目有:鉴别试验、限量或定量检查、原料药或制剂中有效成分含量测定,以及制剂中其他成分(如防腐剂等,中药中其他残留物、添加剂等)的测定。药品溶出度、释放度等检查中,其溶出量等的测定方法也应进行必要验证。鉴别试验、杂质测定(限度或定量分析)、含量测定和特性参数(如:药物溶出度、释放度等)。 验证的指标有:专属性、准确度、精密度(包括重复性、中间精密度和重现性)、专属性、检测限、定量限、线性、范围和耐用性。在分析方法验证中,须用标准物质进行试验。由于分析方法具有各自的特点,并随分析对象而变化,因此需要视具体情况拟订验证的指标。表1 中列出的分析项目和相应的验证指标可供参考。

方法验证内容如下。 三一、专属性 专属性系指在其他成分(如杂质、降解产物、辅料等)可能存在下,采用的分析方法能正确测定出被测物的能力。鉴别反应、杂质检査和含量测定方法,均应考察其专属性。如方法专属性不强,应采用多种不同原理的方法予以补充。 1.鉴别反应 应能区分可能共存的物质或结构相似的化合物。不含被测成分的供试品,以及结构相似或组分中的有关化合物,应均呈阴性反应。 2.含量测定和杂质测定 采用的色谱法和其他分离方法,应附代表性图谱,以说明方法的专属性,并应标明各成分在图中的位置,色谱法中的分离度应符合要求。 在杂质对照品可获得的情况下,对于含量测定,试样中可加入杂质或辅料,考察测定结果是否受干扰,并可与未加杂质或辅料的试样比较测定结果。对于杂质检查,也可向试样中加入一定量的杂质,考察各成分包括杂质之间能否得到分离。 在杂质或降解产物不能获得的情况下,可将含有杂质或降解产物的试样进行测定,与另一个经验证了的方法或药典方法比较结果。也可用强光照射、高温、高湿、酸(碱)水解或氧化的方法进行加速破坏,以研究可能存在的降解产物和降解途径对含量测定和杂质测定的影响。含量测定方法应比对两种方法的结果,杂质检査应比对检出的杂质个数,必要时可采用光二极管阵列检测和质谱检测,进行峰纯度检查。 一二、准确度 准确度系指采用该所建立方法测定的结果与真实值或参比值接近的程度,一般用回收率(%)表示。准确度应在规定的线性范围内测定试验。准确度也可由所测定的精密度、线性和专属性推算出来。

液晶面板的生产线世代如何划分

液晶面板的生产线世代如何划分 2009年11月20日00:00凤凰网财经【大中小】【打印】共有评论0 条 所谓液晶面板世代线数并没有一个严格的定义,而只是业界一个约定俗成的称法。它是按照生产线所应用的玻璃基板的尺寸划分而来的。 简单地说,液晶面板是两层很薄的玻璃基板中间包裹一层液晶分子构成的。生产时,采用的玻璃基板有一个固定的尺寸,再通过切割形成各种尺寸的液晶面板。这就涉及到一个问题:如何切割玻璃基板会使原材料利用率较高,最终成品的经济效益较好。因此,根据经济切割尺寸的不同,液晶生产线也被分成了不同的代数。5代线最高阶段的基板尺寸是 1200X1300mm,最多能切割6片27英寸宽屏LCD-TV用基板,所以5代线的上限是27英寸宽屏电视机;6代线经济切割的上限是37英寸;7代线经济切割的上限是46英寸;8代线的基板尺寸是2160X2460mm,最多可以切割8片46英寸LCD-TV基板,切割6片52英寸LCD-TV 用基板,52英寸是8代线的经济切割尺寸。值得注意的是,不同厂家的生产线,同代线的玻璃基板尺寸也是不尽相同的,例如LG D与夏普的6代线尺寸就并不相同。 总体来说,面板代数越高,面板的尺寸越大,切割的屏幕数量越多,利用率和效益就越高,价格可以做得更便宜,代表着该面板厂的技术实力越强。6代、7代、7.5代、8代线技术上差别不是很大,比如32寸的电视,分辨不出是由6代线还是7代线生产出来的;而生产工艺技术则可能略有不同,比如4代线玻璃基板在生产流程中是水平放置,8代线以上由于玻璃基板巨大,在生产过程中要垂直或倾斜式放置。此外,生产厂商一般更倾向于将更先进的数字电视技术导入世代数的生产线,从而使更高世代产品获得更好的视觉效果。 5代线和5代线以下主要是以生产笔记本和台式电脑用的显示器为主,液晶材料某些参数要求相对要低些;而6代线、7代线或更高代次则以生产液晶电视为主,液晶材料参数要求相对要高点。 全球的液晶面板生产线主要有友达光电、奇美电子、夏普、三星、LG-飞利浦。这些企业供应着全球主要液晶电视品牌厂家的面板需求。 液晶面板生产线世代的划分是根据玻璃基板的大小来划分的,世代的不同其主力切割的产品尺寸不同,产品技术没有区别,生产工艺技术略有不同。 所谓产品技术相同:如32寸的电视,分辨不出是由6代线还是7代线还是其他代线生产出来的,质量性能一样;所谓生产工艺技术不同:如4代线玻璃基板在生产流程中是水平放置,8代线以上由于玻璃基板巨大,在生产过程中要垂直或倾斜式放置。

LED几个重要性能指标分析

LED几个重要性能指标分析 一、LED的颜色 LED的颜色是一项非常重要的指标,是每一个LED相关灯具产品必须标明,目前LED的颜色主要有红色、绿色、蓝色、青色、黄色、白色、暖白、琥珀色等。在我们设计和接单的时候这个参数是千万不能忘记的(尤其是初学者).因为颜色不同,相关的参数也有很大的变化。 二、LED的电流 LED的正向极限(IF)电流多在20MA,而且LED的光衰电流不能大于IF/3,大约15MA和18MA。LED的发光强度仅在一定范围内与IF成正比,当IF>20MA时,亮度的增强已经无法用内眼分出来。因此,LED的工作电流一般选在17—19MA左右比较合理.前面所针对是普通小功率LED()之间的LED而言,但有些食人鱼LED除外(有些在40MA左右的额定值)。 除着技术的不断发展,大功率的LED也不断出现如(IF=150MA),1WLED(IF=350MA),3WLED(IF=750MA)还有其它更多的规格,我不一一进行介绍,你们可以自己去查LED手册。 三、LED的电压 通常所说的LED是正向电压,就是说LED的正极接电源正极,负极接电源负极。电压与颜色有关系,红、黄、黄绿的电压是—之间。白、蓝、翠绿的电压是—之间,这里笔者要提醒的是,同一批生产出的LED电压也会有一些差异,要根据厂家提供的为准,在外界温度升高时,VF将会下降。 四、LED的反向电压VRm 允许增加的最大反向电压。超过数值,发光二极管可能被击穿损坏。 五、LED的色温 以绝对温度K来表示,即将一标准黑体加热,温度升高到一定程度时颜色开始由深红—浅红—橙黄—白—蓝,逐渐改变,某光源与黑体的颜色相同时,将黑体当时的绝对温度称为该光源之色温。 因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。仅凭色温无法了解光源对物体的显色能力,或在该光源下物体颜色的再现如何。 六、发光强度(I、Intensity) 单位坎德拉,即cd。光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),发光强度是针对点光源而言的,或者发光体的大小与照射距离相比比较小的场合。这个量是表明发光体在空间发射的会聚能力的。可以说,发光强度就是描述了光源到底有多“亮”,因为它是光功率与会聚能力的一个共同的描述。发光强度越大,光源看起来就越亮,同时在相同条件下被该光源照射后的物体也就越亮,因此,早些时候描述手电都用这个参数。 现在LED也用这个单位来描述,比如某LED是15000的,单位是mcd,1000mcd=1cd,因此15000mcd就是15cd。之所以LED用毫cd(mcd)而不直接用cd来表示,是因为以前最早LED比较暗,比如1984年标准5mm的LED其发光强度才,因此才用mcd表示。 用发光强度来表示“亮度”的缺点是,如果管芯完全一样的两个LED,会聚程度好的发光强度就高。因此,用户在购买LED的时候不要只关注高I值,还要看照射角度。很多高I值的LED并非提高自身的发射效率来达到,而是把镜头加长照射角度变窄而实现,这尽管对LED手电有用,但可观察角度也受限。另外,同样的管芯LED,直径5mm的I值就比3mm的大一倍多,但只有直径10mm的1/4,因为透镜越大会聚特性就越好。

TFTLCD玻璃基板浅谈

TFT-LCD玻璃基板浅谈 时间:2008-03-15 10:46:47来源:中国建材网文号:大中小 玻璃基板对TFT-LCD行业犹如硅晶圆对半导体行业之重要,虽然玻璃基板只占 TFT-LCD原材料成本比重的7%左右,但是却是最最重要的元件。TFT-LCD生产线更新换代的前提必须就必须包括玻璃基板厂家提供新一代生产线所使用的玻璃基板,否则一切都是空谈。 TFT-LCD模组在制造过程中有真空蒸镀与刻蚀工艺,因此玻璃基板必须耐高温,耐强酸强碱。同时考虑重量和厚度,玻璃基板必须非常薄,尤其LCD-TV对应大尺寸后,玻璃基板如果不薄,就增加不少重量,目前玻璃基板的厚度最低可以做到0.4毫米厚。同时玻璃基板要高透光性,否则影响画面质量,所以必须要在无尘室中生产。因为有高温过程,所以合格率相当难控制。玻璃基板还要高度平整,其平整度要求比硅晶圆还要高。 玻璃基板的生产技术高度复杂与高深,因此全世界只有很少的4家公司能够制造玻璃基板。分别是美国康宁、日本旭硝子、日本电气硝子、日本板硝子。其中美国康宁市场占有率第一,有近50%的份额,日本旭硝子有超过30%的份额,日本电气硝子大约10%,日本板硝子不到10%。日本旭硝子同时还垄断了PDP(PlasmaDisplayPanel等离子显示板)电视用玻璃基板市场,市场占有率达90%,PDP电视用的玻璃基板比TFT-LCD用的玻璃基板要求耐高温更高。日本板硝子因为曾经有锅炉泄露毒气事件,元气大伤,目前主要从事彩色滤光片玻璃基板的生产。 玻璃基板是超薄、超平滑、超精细的玻璃,运输成本极高,因此TFT-LCD企业必须和玻璃基板厂家捆绑才能生存。最早TFT-LCD厂家都集中在日本,所以玻璃基板厂家龙头康宁在日本设立日本康宁公司,为日本企业提供玻璃基板。之后韩国TFT-LCD产业兴起,日本电气硝子与南韩企业成立韩国电气硝子,而三星则有三星康宁提供玻璃基板。 日本市场主要有日本康宁与旭硝子。日本康宁是美国康宁海外分公司,美国康宁则引导了全世界玻璃工业和光纤制造业的发展,美国康宁公司成立于1851年,世界500大企业之一,生产出世界上第一个电灯泡,同时也是光纤大厂,因为通信业不景气,光纤业务让康宁出现亏损。康宁已经把主力转移到玻璃制造上。主要生产高性能显示玻璃和天文望远镜。70年代,康宁为日本科学实验室提供显示用玻璃,1986年开始为日本厂家提供LCD用玻璃基板。1989年建立日本康宁公司,同时设立康宁技术研究中心。日本康宁的主要客户是夏普。夏普是世界上第一个投入6代线建设的厂家,最迟到2004年1月投产,日本康宁已经做好了为夏普提供玻璃基板的准备工作。 30英寸以上的大屏幕LCD-TV需要比5代线更先进的6代线和7代线技术,目前能够

TFT—LCD用玻璃基板发展现状及趋势(玻璃杂志061)

TFT—LCD用玻璃基板 发展现状及趋势 李超 随着科学技术的进步和信息技术的迅猛发展,具有质量轻,图像细腻、清晰,色彩丰富、自然、逼真等优点的薄膜晶体管型液晶显示器(即TFT-LCD)正逐渐取代传统的阴极射线管(CRT)显示器,预计未来几年将成为显示器的主流产品。TFT-LCD是在无碱超薄玻璃上印刷微电子电路,主要特点是在每个像素(像素就是一些能够发出彩色光线的小点)配置一个半导体开关件,每个像素都是一个相互隔离的独立的晶体管,可以通过点脉冲直接控制,因而每个节点相对独立,并可连续控制,这样不仅提高了反应时间(一般可以达到80ms 左右),同时在灰度控制上可以做到非常精确,这就是TFT色彩更为逼真的原因。 TFT-LCD 是由偏光板、液晶面板,另外再加上背光源组成的。制作一片液晶面板需要两片玻璃基板,分别作为底层玻璃基板和彩色滤光片板使用。虽然玻璃基板只占TFT-LCD原材料成本比重的6%左右,但却是最最重要的元件。TFT-LCD生产线更新换代必须以玻璃基板厂家提供新一代生产线所生产的玻璃基板为前提,否则一切都是空谈。 一、TFT-LCD用玻璃基板的发展现状 玻璃基板又称素玻璃,是超薄、超平滑、超精细无碱硅酸铝玻璃,其碱金属总含量要求在0.1%以下。自90年T F T- L C D产业由日本第一代产品的生产, 发展到目前康宁公司正在研制的第七代产品所使用玻璃基板已经历了七代。玻璃基板的切割片数有一个最佳经济值,达到这个值以上意味着较高的生产效率,业界公认的经济切割片

数是6,按照玻璃基板尺寸的大小划分生产线属于哪一代。(见表一)表一单位: 目前在商业上应用的玻璃基板,主要厚度为0.7 m m或0.6 m m,并且已经进入更薄厚度(如0.4 m m )的研制开发阶段。主要应用于液晶桌面显示器、笔记本电脑以及液晶彩电的面板制作中。 由于TFT-LCD模组在制造过程中需要真空蒸镀与刻蚀,因此玻璃基板必须耐高温、耐强酸强碱;同时考虑重量和厚度,玻璃基板必须非常薄,尤其对应大尺寸后,玻璃基板如果过厚,就会增加不少重量;玻璃基板要求高透光性,否则影响画面质量,所以必须要在无尘室中生产;玻璃基板还要高平整度,其平整度要求比硅晶圆还要高。鉴于玻璃基板生产技术的高度复杂与高深,全世界只有很少的4家公司能够制造玻璃基板,分别是美国康宁、日本旭硝子、日本电气硝子、日本板硝子。据初步统计,截止2004年底全球TFT-LCD用玻璃基板生产能力达6050万m2/年。其中康宁共有23座TFT-LCD用玻璃基板熔炉,生产能力可达3150万m2/年;日本旭硝子共有4座熔炉,生产能力可达1400万m2/年;日本板硝子共有6座熔炉,生产能力为900万m2/年;日本电气硝子共有5座熔炉,生产能力为600万m2/年。 目前,我国大陆还没有厂家能生产TFT-LCD用玻璃基板,所用玻璃基板全部依赖于进口。据报载,2003年7月,XX力诺集团与德国EPT公司合作开发生产TFT-LCD用玻璃基板。如果合作成功,

第八章 水基钻井液滤液化学分析

第八章水基钻井液滤液化学分析 一、氯离子含量的测定 钻遇岩盐层或盐水层时,NaCl等无机盐会进入钻井液造成污染,使其性能变坏,因此需要检测钻井液滤液中Cl-浓度。检测方法,取1毫升钻井液滤液,用0.0282M 标准AgNO3溶液滴定,指示剂为K2CrO4,当试样中出现橘红色Ag2CrO4沉淀时为终点。 1、仪器和试剂 (1)硝酸银溶液 : 浓度为0.0282N和0.2820N ; (2)铬酸钾溶液 : 5g/100 ml水; (3)硫酸或硝酸溶液: 0.02N 标准溶液; (4)酚酞指示剂:将1g酚酞溶于100 ml浓度为50%的酒精水溶液中配制而成; (5)沉淀碳酸钙:化学纯; (6)蒸馏水; (7)带刻度的移液管: 1 ml和10 ml的各一支; (8)锥形瓶: 100-150 ml,白色。 (9)搅拌棒。 2、测定步骤 (1)取1ml或几ml滤液于滴定瓶中,加2~3滴酚酞溶液。如果显示粉红色,则边搅拌边用移液管逐滴加入酸,直至粉红色消失。如果滤液的颜色较深,则 先加入2 ml 0.2N硫酸或硝酸并搅拌,然后再加入1g碳酸钙并搅拌。(现 场实际操作中此步意义不大,粗略测定情况下此步可省略)(2)加入25-50 ml蒸馏水和5-10滴铬酸钾指示剂。在不断搅拌下,用滴定管或移液管逐滴加入硝酸银标准溶液,直至颜色由黄色变为橙红色并能保持30s 为止。记录达到终点所消耗的硝酸银的ml数。如果硝酸银溶液用量超过10 ml,则取少一些滤液进行重复测定。如果滤液中的氯离子浓度超过 1000mg/l,应使用0.2820N的浓度的硝酸银溶液。 3、计算 AgNO3 + CL-→ AgCL↓ + NO3- 如果取样1ml滤液,用0.282N当量浓度的AgNO3的标准溶液滴定,0.282N当量浓度的AgNO3摩尔浓度为0.282 mol/L,硝酸银和氯离子反应的关系是1:1,假如滴定时消耗Xml的硝酸银,就消耗了0.282*X mol的硝酸银,就说明有0.282X mol的CL-,在把它转换成自量浓度mg/L,就成了0.282*X*35.45*1000mg/L。(其中35.45为CL-的摩尔质量分数,1000为ml到L的换算系数)

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

钻井液及滤液分析

钻井液性能测试步骤 一、高温高压滤失量测试方法: 1、把温度计插入钻井液压滤器外加热套的温度计插孔中,接通电源,预热至略高于所需温度(5- 6℃)。 2、将待测钻井液高速搅拌1min后,倒入压滤器中,使钻井液液面距顶部约13mm,放好滤纸,盖 好杯盖,用螺丝固定。 3、将上、下两个阀杆关紧,放进加热套中,把另一支温度计插入压滤器上部温度计的插孔中。 4、连接气源管线,把顶部和底部压力调节至690kPa,打开顶部阀杆,继续加热至所需温度(样品 加热时间不要超过1h)。 5、待温度恒定后,将顶部压力调节至4140kPa,打开底部阀杆并记时,收集30min的滤出液。在试 验过程中温度应在所需温度的±3℃之内。如滤液接收器内的压力超过690kPa,则小心放出一部分滤液以降低压力至690kPa,记录30min收集的滤液体积(单位:ml)。 6、试验结束后,关紧顶部和底部阀杆,关闭气源、电源、取下压滤器,并使之保持直立的状态冷 却至室温,放掉压滤器内的压力,小心取出滤纸,用水冲洗滤饼表面上的浮泥,测量并记录滤饼厚度及质量好坏。洗净并擦干压滤器。 二、坂含的测定: 1、把2ml的钻井液加到盛有10ml水的锥形瓶中。 2、加入15mlH2O2溶液和0.5mlH2SO4溶液,缓慢煮沸10min,但不能蒸干,用水稀释至50ml。 3、以每次0.5ml的量把亚甲基蓝溶液加入锥形瓶中,并旋摇30S。在固体悬浮的状态下,用搅拌 棒取一滴液体在滤纸上,当染料在染色固体周围显出蓝色环时,即以达到滴定终点,当蓝色环从斑点向外扩展时,再旋摇2min,再取一滴滴在滤纸上,如果蓝色环仍然是明显的,则以达到终点。如果色环不出现,则继续滴定,直至摇2min后显出蓝色环为止。 4、计算公式:MBT=1000V1/70V V1—滴定时所用亚甲基蓝溶液体积(ml)。 V—钻井液体积(ml)。 滤液分析 一、氯离子的测定: 1、用移液管移取2ml钻井液滤液于锥形瓶中,加入蒸馏水10ml和酚酞指示液(5g/l)1滴(用 0.1mol/LnaOH或0.1mol/L硝酸溶液调至粉红色刚刚消失),加入铬酸钾溶液(50g/L)1-2滴 (约0.5mL),用0.1mol/L硝酸银标准溶液滴定至刚刚有砖红色沉淀出现为终点,记录消耗硝酸银标准溶液的体积。 2、计算: cl-=3550V/2 V—消耗硝酸银标准溶液的体积,mL。 cl-—滤液中氯离子的含量,ppm。 二、钙离子的测定: 1、用移液管移取2ml钻井液滤液于锥形瓶中,加入1:2三乙醇胺溶液2ml,摇匀,再用 2mol/LnaOH调节至pH值12-14,加入约30mg钙指示剂,用0.01mol/LEDTA标准溶液滴定至由紫红色变为纯蓝色为终点,记录消耗EDTA标准溶液的体积。 2、计算: ca2+=400V/2 V—消耗EDTA标准溶液的体积,ml。 Ca2+—滤液中钙离子的含量,ppm。

TFT-LCD玻璃基板制造方法

TFT-LCD玻璃基板制造方法:浮式法、流孔下引法、溢流熔融法 2004-8-19 目前在商业上应用的玻璃基板,其主要厚度为0.7 mm及0.6mm,且即将迈入更薄( 如0.4 mm )厚度之制程。基本上,一片TFT- LCD面板需使用到二片玻璃基板,分别供作底层玻璃基板及彩色滤光片(COLOR FILTER )之底板使用(彩色滤光片剖面图如图一)。一般玻璃基板制造供货商对于液晶面板组装厂及其彩色滤光片加工制造厂之玻璃基板供应量之比例约为1:1.1至1:1.3左右。 LCD所用之玻璃基板概可分为碱玻璃及无碱玻璃两大类;碱玻璃包括钠玻璃及中性硅酸硼玻璃两种,多应用于TN及STN LCD上,主要生产厂商有日本板硝子(NHT)、旭硝子(Asahi)及中央硝子(Central Glass)等,以浮式法制程生产为主;无碱玻璃则以无碱硅酸铝玻璃(Alumino Silicate Glass,主成分为SiO2、Al2O3、B2O3(氧化硼)及BaO(氧化钡)等)为主,其碱金属总含量在1%以下,主要用于TFT- LCD上,领导厂商为美国康宁( Corning )公司,以溢流熔融法制程生产为主。 超薄平板玻璃基材之特性主要取决于玻璃的组成,而玻璃的组成则影响玻璃的热膨胀、黏度(应变、退火、转化、软化和工作点)、耐化学性、光学穿透吸收及在各种频率与温度下的电气特性,产品质量除深受材料组成影响外,也取决于生产制程。 玻璃基板在T N / S T N、TFT- LCD应用上,要求的特性有表面特性﹑耐热性﹑耐药品性及碱金属含量等;以下仅就影响TFT- LCD用玻璃基板之主要物理特性说明如下:

控制系统性能指标

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc 大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

钻井液分析操作

钻井液分析操作规程 一.HTHP失水操作步骤: 1.把温度计插入钻井液压滤器外套加热套的温度计插孔中,接通电源,预热至略高于所需温度(高5-6度); 2.将待测钻井液高搅一分钟,倒入压滤器中,使钻井液液面距顶部13mm,放好滤纸,盖好杯盖,用螺丝顶紧固定; 3.将上下两个阀杆关紧,放进加热套中,把另一温度计放入压滤器上部温度计插孔中; 4.连接气源管线,把顶部和底部压力调节至690Kpa(6.18atm),打开顶部阀杆,继续加热至所需温度(样品加热时间不超过 一小时); 5.待温度恒定后,将顶部压力调至4140Kpa(40.86atm),打开底部阀杆并计时,收集30分钟的滤液。在实验过程中,温 度应在所需温度的正负3度以内,如滤液接收器内的压力超 过690Kpa(6.18atm),记录30分钟收集的滤液体积。 6.实验结束后,关紧底部和顶部阀杆,关闭气源、电源,取下压滤器,并使之保持直立状态冷却至室温,放掉压力器内压 力,取出滤纸,用水冲洗泥饼表面的浮泥,测量并计录泥饼 厚度和滤失量; 7.计算公式: 7.5分钟收集的滤液体积×2=30分钟的滤失量(ml)

二.亚甲基兰含量的测试步骤及坂土含量的计算: 1.取2ml钻井液加入三角烧瓶中,加入10ml蒸馏水,15ml 的3%双氧水,0.5ml的5N(2.5mol/L)硫酸溶液,缓慢煮沸 10分钟,但不能蒸干,然后用水稀释至50ml. 2.以每次0.5ml的量将亚甲基兰溶液(3.74g/L)加入三角烧瓶中,并旋摇30秒,在固体悬浮的状态下,用搅棒取一滴液 体在滤纸上,当染料在染色固体周围显出绿----兰色环时, 摇荡三角瓶2分钟,再用搅拌棒取一滴在滤纸上,若色环仍 不消失,则表明已到滴定终点;若色环消失,则继续上述操 作,记录所耗亚甲基兰溶液的毫升数; 3.坂土含量的计算(MBT): MBC(ml)=消耗的亚甲基兰溶液体积/钻井液体积 MBT(g/L) =14.3*MBC 注:MBC----亚甲基兰容量MBT----坂土含量

TFT-LCD液晶面板模组生产工艺

TFT-LCD液晶面板模组生产工艺 TFT-LCD 评论:0 条查看:95 次 ufuture 发表于 2008-01-09 09:39 朋友,您见过液晶显示器吗?无论是NB、桌面TFT-LCD、超薄TV,还是便携DVD、DC、DV、PDA、手机用彩色面板,液晶无处不在,时时刻刻用绚丽的色彩与影像向您展示高科技的魅力。虽然液晶显示器应用十分广泛,但其生产却是技术十分复杂、工艺高度精密的过程,甚至不亚于集成电路晶元的制造. 笔者数日前有幸参观了世界著名的光电企业苏州模组厂的生产线,对LCD液晶面板的“组装”过程有了一定认识,在此撰文描述之,如有不妥之处请读者和专家批评。 所谓“模组”厂(LCM)其实是液晶显示器的“后段”生产过程,顾名思义,模组二字即模块组合,它共有三个步骤:第一步:将LCD液晶成品面板(Cell)、异方向性导电胶(ACF)、驱动IC、柔性线路板(FPC)和PCB电路板利用机台压合(其间需在太上老君炼丹炉内经过一定的温度和压力才能练就火眼金睛:), 第二步:接下来和背光板、灯源、铁框一齐组装成品; 第三步:老化处理,经过重重检测就是我们见到的“液晶面板了”。 总之,相对于第五代面板厂那种天价的投资(动辄数十亿美元)、惊人的占地面积(起码五个足球场)和需要的无数高精尖设备(全在美国对大陆禁运之列),模组厂在技术、规模上还属于小巫见大巫的,不过能亲眼进入无尘车间也是一大快事,在进入车间前,沐浴修身是不必了,不过所有的电子设备包括数码相机、手机等均需统统枪毙。

在用图片展示整个生产流程之前,我们还是先来了解一下液晶显示面板的工作原理吧,这能加深我们对工厂的认识。 TFT-LCD 液晶显示屏是透过硅玻璃上的电路形成电场,来驱动玻璃与滤光片间的液晶分子,在自然状态下呈并列平行排列,当电路对液晶层施加电场,液晶分子会朝不同的方向偏转,这时液晶类似于开关作用可以让光线通过,令液晶层形成不同的透光效果,从而达到显示不同画面的目的. 好,有了这个基础,我们沿着生产流程来看. 首先,在制造过程中,组装区和包装区所需要的“人力”成本还是相当可观,因此难怪台湾纷纷把大陆作为模组部分的首选——除接近客户外也可大幅降低成本。

数值分析常用的插值方法

数值分析 报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上 n+1 个互不相同点x 0,x 1 (x) n 处的值是f(x ),……f(x n ),要求估算f(x)在[a,b〕 中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C , C 1,……C n 的函数类Φ(C ,C 1 ,……C n )中求出满足条件P(x i )=f(x i )(i=0,1,…… n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x 0,x 1 ,……xn 称为插值结(节)点,Φ(C 0,C 1 ,……C n )称为插值函数类,上面等式称为插值条件, Φ(C 0,……C n )中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为 插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,, ,n x x x 上的函数值01,, ,n y y y ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =+++ +,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 201121112012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?+++ +=?++++=??? ?+++ +=? 其系数矩阵的行列式D 为范德萌行列式: () 200021110 2 111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏

钻井液体系

国内外钻井液技术发展概述 (2012-05-2711:05:36)摘要:本文主要论述了国内外钻井液的发展状况及发展趋势,介绍了近年来国内外发展起来的16种新型钻井液技术,国内外钻井液技术仍以抗高温、高压、深井复杂地层的钻井液技术为主攻目标,指出了钻井液处理剂的发展方向是高效廉价、一剂多效、保护油气层、尽可能减轻环境污染,并寻求技术更先进、性能更优异、综合效益更佳的钻井液体系及钻井液处理剂。对钻井液技术发展进行了展望,由于深井、复杂井、特殊工艺井以及特殊储藏的开发、环境保护的重视,对钻井液完井液的要求越来越高,所以抗高温、高压、深井复杂地层、油气层保护仍是钻井液完井液技术发展的重要方向。 关键词:钻井液技术发展 一、国内外钻井液技术新发展概述 钻井液作为服务钻井工程的重要手段之一。从90年代后期钻井液的主要功能已从维护井壁稳定,保证安全钻进,发展到如何利用钻井液这一手段来达到保护油气层、多产油的目的。一口井的成功完井及其成本在某种程度上取决于钻井液的类型及性能。因此,适当地选择钻井液及钻井液处理剂以维护钻井液具有适当的性能是非常必要的。钻井液及钻井液处理剂经过80年代的发展高潮以后,逐渐进入稳定期,亦即技术成熟期。可以认为,由于钻井液及钻井液处理剂都有众多的类型及产品可供选择,因此现代钻井液技术已不再研究和开发一般钻井液及钻井液处理剂产品,而是在高效廉价、一剂多效、保护油气层、尽可能减轻环境污染等方面进行深入研究,以寻求技术更先进、性能更优异、综合效益更佳的钻井液及钻井液处理剂。 1.抗高温聚合物水基钻井液 所使用的聚合物在其C-C主链上的侧链上引入具有特殊功能的基团如:酰胺基、羧基、磺酸根(S03H)、季胺基等,以提高其抗高温的能力。不论是其较新的产品,如磺化聚合物P OLYDRILL,或早己生产的产品如S.S.M.A.(磺化苯乙烯与马来酸酐共聚物)均是如此,并采取下列措施:

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

长庆油田钻井液现状分析

延安职业技术学院毕业论文 题目:长庆油田钻井液现状分析 所属系部:石油工程系 专业:钻井技术 年级/班级:07(五)钻井班 作者:赵文田 学号:071395002023014 指导教师: 评阅人: 2012年5 月27日

目录 第1章绪论 (1) 第2章长庆油田储层特征和钻井难点 (3) 2.1 长庆油田储层特征 (3) 2.2 长庆油田钻井问题分析 (4) 第3章长庆油田常用钻井液体系分析 (6) 3.1 低固相聚合物钻井液 (6) 3.1.1 体系的配方 (6) 3.1.2 体系的特点 (6) 3.1.3 现场应用分析 (7) 3.2 双钾离子聚合物钻井液 (7) 3.2.1 体系的配方 (7) 3.2.2 体系的特点 (7) 3.2.3 现场应用分析 (8) 3.3 无土相低伤害暂堵钻井液 (9) 3.3.1 体系的配方 (9) 3.3.2 体系的特点 (9) 3.3.3 现场应用分析 (10) 3.4 环保钻井液体系 (10) 3.4.1 体系配方处理剂 (10) 3.4.2 体系特点 (10) 3.4.3 现场应用分析 (11) 第4章结论 (12) 致谢 (13) 参考文献 (14)

摘要:根据长庆油田储层特征,认为在油气田开采过程中涉及的钻井液性能,必须注意以下几点:(1)对储层伤害小;(2)必须有较好的抑制性能和滤失性能;(3)低毒或无毒,对环境污染小;(4)对油品污染小。通过对现有钻井液进行归纳,并对长庆油田近年来使用的钻井液进行总结,将长庆油田钻井液体系归纳为:一开时,钻穿表层黄土层,主要用清水或低固相聚合物钻井液,提高钻井速度,钻井液主要组成有膨润土、高分子聚合物(如KPAM、PAC-H、HV-CMC)等,防止坍塌及有效清洗井眼,使表层套管下入顺利;二开以防塌、防漏、安全快速钻进为目的,以低固相聚合物体系或双钾聚合物钻井液体系为主;若遇水平井段,使用无土相低伤害暂堵钻(完)井液体系。在此基础上分别对各个钻井液体系的组成、特点及应用进行了分析。 关键字:长庆油田;储层特征;钻井

2015版《中国药典》四部介绍及其在中药分析鉴定中的应用

2015 年版《中国药典》四部介绍 及其在中药分析鉴定中得应用 李峰 2015年版《中国药典》已于2015年6月5日由国家食品药品监督管理总局正式颁布。2015年版《中国药典》最大得变动之一就是将原药典各部附录整合,并与药用辅料标准单立成卷,首次作为《中国药典》第四部,解决了长期以来药典各部共性检测方法重复收录、彼此之间方法不协调、不统一、不规范,给药品检验实际操作带来不便得问题。2015年版《中国药典》四部就是保证《中国药典》执行得重要基础,就是2015年版《中国药典》水平与特色得重要体现,也就是系统阐述药品检测技术、传播药典知识得良好教科书,对于强化药品监管手段,保障药品质量不断提高,促进先进检测技术应用与行业健康必将发挥积极得作用。 一、2015年版《中国药典》四部介绍 2015年版《中国药典》四部内容包括凡例、通则与药用辅料。药典通则涵盖了通用性要求、检验方法、指导原则以及试剂与标准物质等药品标准得共性要求,就是药典标准得基础,不但反映了我国药品质量控制整体状况与药品检验技术水平;同时也对规范药品研究、生产、检验、加强药品监管发挥重要作用。现就2015年版《中国药典》四部整体情况简要介绍如下。 1、2015年版《中国药典》四部增修订整体情况 2015年版《中国药典》四部收载通则总数317个,将药典一部、二部、三部制剂整合后共计38个,检测方法附录287个,其中新增通则28个 (检定方法通则27个、制剂通则1个),整合通则63个,修订通则 67 个;新增生物制品总论3个;指导原则共计30个,其中新增15个,修订10个。辅料收载总数约270个品种,其中新增137 个,修订97个,不收载2个。 2、2015年版《中国药典》四部主要特点 2、1 整体提升质控水平 《中国药典》凡例、通则、总论就是药典得重要组成部分,对药品标准得检测方法与限度进行总体规定,对药典以外得其她药品国家标准具同等效力。通过对2010年版《中国药典》相关内容得全面增修订,全面完善了药典标准基本共性规定,从整体上提升对药品质量控制得要求,形成了以凡例为统领,通则为同类药品基本准则、各论作为基本要求得药典标准体例。药品标准控制更加全面化、系统化、规范化。 2、2 药典标准体系更加完善 2015年版《中国药典》四部首次纳入“国家药品标准物质通则”以及“国家药品标准物质制备指导原则”、“药包材通用要求”与“药用玻璃材料与容器”等指导原则,进一步完善了药用辅料与药包材通用性要求,从影响药品质量得等各方面,包括原料药及其制剂、药品标准物质、药用辅料与药包材得制定控制要求,形成了全面

相关文档
相关文档 最新文档