文档库 最新最全的文档下载
当前位置:文档库 › 高考数学总复习专题 双曲线

高考数学总复习专题 双曲线

高考数学总复习专题 双曲线
高考数学总复习专题 双曲线

专题10.2 双曲线

【三年高考】

1. 【2017高考江苏】在平面直角坐标系xOy 中,双曲线2213

x

y -=的右准线与它的两条渐近

线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .

2. 【2016高考江苏】在平面直角坐标系xOy 中,双曲线22

173

x y -=的焦距是 ▲ .

【答案】210 【解析】 试题分析:222227,3,7310,10,2210a b c a b c c ==∴=+=+=∴=∴=.故答案应

填:210

【考点】双曲线性质

【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息

相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22

221(0,0)x y a b a b

-=>>揭示

焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2222c a b =+,渐近线方程为b

y x a =±,

离心率为22

c a b a a

+=.

2.【2012江苏,理8】在平面直角坐标系xOy 中,若双曲线

22

214

x y m m -=+的离心率为5,则m 的值为__________. 【答案】2

【解析】根据双曲线方程的结构形式可知,此双曲线的焦点在x 轴上,且a2=m ,b2=m2+4,

故c2=m2+m +4,于是222

224

(5)c m m e a m

++===,解得m =2,经检验符合题意.

4.【2017课标II ,理9】若双曲线C:22

221x y a b

-=(0a >,0b >)的一条渐近线被圆

()

2

224x y -+=所截得的弦长为2,则C 的离心率为( )

A .2

B .3

C .2

D .

23

3

【答案】A

【解析】

【考点】双曲线的离心率;直线与圆的位置关系,点到直线的距离公式

【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:

①求出a,c,代入公式

c

e

a =;

②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)。

5. 【2017天津,理5】已知双曲线

22

22

1(0,0)

x y

a b

a b

-=>>的左焦点为F,离心率为2.

若经过F和(0,4)

P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为

(A)

22

1

44

x y

-=(B)

22

1

88

x y

-=(C)

22

1

48

x y

-=(D)

22

1

84

x y

-=

【答案】B

【考点】双曲线的标准方程

【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧

设双曲线(1)双曲线过两点可设为2

2

1(0)mx ny mn -=>,(2)与22

221x y a b

-=共渐近线的

双曲线可设为2222(0)x y a b

λλ-=≠,(3)等轴双曲线可设为22

(0)x y λλ-=≠等,均为待定

系数法求标准方程.

6.【2017北京,理9】若双曲线2

2

1y x m

-=的离心率为3,则实数m =_________.

【答案】2 【解析】

试题分析:2

2

1,a b m == ,所以

13c m a +== ,解得2m = . 【考点】双曲线的方程和几何性质

【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意a 、b 、c 的关系222

c a b =+,否则很容易出现错误.以及当焦点在x 轴时,哪些量表示2

2

,a b ,根据离心率的公式计算.

7.【2017课标1,理】已知双曲线C :22

221x y a b

-=(a >0,b >0)的右顶点为A ,以A 为圆心,b

为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.

【答案】

3

3

【解析】试题分析:

【考点】双曲线的简单性质.

【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是

ab c

. 8. 【2017课标3,理5】已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5

y x =,且与椭圆

22

1123x y +=有公共焦点,则C 的方程为 A .22

1810

x y -

= B .22

145

x y -

= C .22

154

x y -

= D .22

143

x y -

=

【答案】B 【解析】

试题分析:双曲线C:

22

22

1

x y

a b

-= (a>0,b>0)

的渐近线方程为

b

y x

a

=±,

椭圆中:22222

12,3,9,c3

a b c a b

==∴=-==,椭圆,即双曲线的焦点为()

3,0

±,

据此可得双曲线中的方程组:222

5

2

3

b

a

c a b

c

?

=

?

??

=-

?

?=

?

??

,解得:22

4,5

a b

==,

则双曲线C的方程为

2

1

45

x y

2

-= .

故选B.

【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程.

【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()

2

22

x y

a b

λλ

2

-=≠,再由条件求出λ的值即可.

10.【2017山东,理14】在平面直角坐标系xOy中,双曲线()

22

22

10,0

x y

a b

a b

-=>>的右支与焦点为F的抛物线()

220

x px p

=>交于,A B两点,若4

AF BF OF

+=,则该双曲线的渐近线方程为 .

【答案】

2

2

y x

【考点】1.双曲线的几何性质.2.抛物线的定义及其几何性质.

【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.

求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为12

2

=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0

2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.

10.【2016高考新课标1卷改编】已知方程22

2

213x y m n m n

-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 . 【答案】()1,3- 【解析】

试题分析:22

2213x y m n m n

-=+-表示双曲线,则()()

2230m n m n +->

∴223m n m -<<,由双曲线性质知:()()

222234c m n m n m =++-=,其中c 是半焦距 ∴焦距2224c m =?=,解得1m =,∴13n -<<. 考点:双曲线的性质

【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c ,这一点易出错.

11.【2016高考新课标2理数改编】已知12,F F 是双曲线22

22:1x y E a b

-=的左,右焦点,点M

在E 上,1MF 与x 轴垂直,211

sin 3

MF F ∠=,则E 的离心率为 . 2 【解析】

试题分析:因为1MF 垂直于x 轴,所以22

12,2b b MF MF a a a ==+,因为211sin 3

MF F ∠=,

212

2

1

3

2b MF a

b MF a a

=

=+

,化简得b a =

,故双曲线离心率e ==考点:双曲线的性质.离心率.

【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2

=b 2

+c 2

,而在双曲线中c 2

=a 2

+b 2

.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).

12.【2016高考天津理数】已知双曲线2

2

24=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的

圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为 .

【答案】

2

22

4=11x y - 【解析】

试题分析:根据对称性,不妨设A 在第一象限,(,)A x y ,

∴2

2

422x x y b

b y x y ?=?+=?

??

???=??=???

, ∴2

21612422

b b xy b b =?=?=+,故双曲线的方程为221412x y -

=. 考点:双曲线渐近线

【名师点睛】求双曲线的标准方程关注点:

(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.

(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2

+By 2

=1(AB <0).

②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2

-n 2y 2

=λ(λ≠0).

13.【2016高考山东理数】已知双曲线E :22

221x y a b

-= (a >0,b >0),若矩形ABCD 的四个

顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2

【解析】

试题分析:假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以2

2b |AB |a =,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1

e 2

=-(舍去)

,所以E 的离心率为2.

考点:双曲线的几何性质

【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.

14.【2016年高考北京理数】双曲线22

221x y a b

-=(0a >,0b >)的渐近线为正方形OABC

的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则

a =_______________.

【答案】2

考点:双曲线的性质

【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.

求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为12

2

=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0

15.【2015高考福建,理3】若双曲线22

:

1916

x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于_______________. 【答案】9

【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =.

16.【2015高考广东,理7】已知双曲线:的离心率,且其右焦点,

则双曲线的方程为___________.

【答案】

【解析】因为所求双曲线的右焦点为

且离心率为

,所以,,

所以所求双曲线方程为.

【2018年高考命题预测】

纵观2017各地高考试题,可以看出,对双曲线的考查以选择、填空为主,主要侧重以下几点:(1)双曲线定义的应用;(2)求双曲线的标准方程.(3)以双曲线的方程为载体,研究与参数a ,

b ,

c ,e 及渐近线有关的问题,其中离心率和渐近线是考查的重点和热点,高考题中以选择、

填空题为主,分值为5分,难度为容易题和中档题,个别省份以解答题形式考查双曲线的定义、标准方程、几何性质及直线与椭圆的位置关系,分值为12分左右,难度较大.2018年高考仍会延续这种情形,以双曲线的方程与性质为主.备考时应熟练掌握双曲线的定义、求双曲线标准方程的方法,能灵活运用双曲线定义及几何性质确定基本元素,,a b c .另外,要深入理解参数,,a b c 的关系、渐近线及其几何意义,应注意与向量、直线、圆等知识的综合.

【2018年高考考点定位】

高考对双曲线的考查有两种主要形式:一是考双曲线的定义与标准方程;二是考查双曲线的几何性质;三是考查直线与双曲线的简单位置关系,从涉及的知识上讲,常平面几何、平面向量、方程数学、不等式等知识相联系,字母运算能力和逻辑推理能力是考查是的重点. 【考点1】双曲线的定义与标准方程 【备考知识梳理】

1.双曲线的定义:把平面内与两定点12,F F 的距离之差的绝对值等于常数(小于12||F F )的

C 12222=-b y a x 54e =()25,0F C 19162

2=-y x ()

25,0F 5

4c e a =

=

5c =4a =222

9b c a =-=22

1169x y -=

点的轨迹叫做双曲线,这两个定点叫双曲线的焦点,两焦点之间的距离叫焦距,符号表述为:

12||||2PF PF a -=±(122||a F F <).

注意:(1)当122||a F F =时,轨迹是直线12F F 去掉线段12F F .(2)当122||a F F >时,轨迹不存在.

2.双曲线的标准方程:(1) 焦点在x 轴上的双曲线的标准方程为22221(0,0)x y a b a b -=>>;

焦点在y 轴上的双曲线的标准方程为22

221(0,0)y x a b a b

-=>>.给定椭圆

22

1()x y m n m n

+=与异号,要根据,m n 的正负判定焦点在哪个坐标轴上,焦点在分母为正的那个坐标轴上.

(2)双曲线中,,a b c 关系为:2

2

2

-a c b =. 【规律方法技巧】

1.利用双曲线的定义可以将双曲线上一点到两焦点的距离进行转化,对双曲线上一点与其两焦点构成的三角形问题,常用双曲线的定义与正余弦定理去处理.

2.求双曲线的标准方程方法

(1)定义法:若某曲线(或轨迹)上任意一点到两定点的距离之差(或距离之差的绝对值)为常数(常数小于两点之间的距离),符合双曲线的定义,该曲线是以这两定点为焦点,定值为实轴长的双曲线,从而求出双曲线方程中的参数,写出双曲线的标准方程,注意是距离之差的绝对值是双曲线的两只,是距离之差是双曲线的一只,要注意是哪一只.

(2)待定系数法,用待定系数法求双曲线标准方程,一般分三步完成,①定性-确定它是双曲线;②定位-判定中心在原点,焦点在哪条坐标轴上;③定量-建立关于基本量,,,a b c e 的关系式,解出参数即可求出双曲线的标准方程.

3.若双曲线的焦点位置不定,应分焦点在x 轴上和焦点在y 轴上,也可设双曲线的方程为

221Ax By +=,其中,A B 异号且都不为0,可避免分类讨论和繁琐的计算.

4.若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论. 【考点针对训练】

1.以抛物线y 2

=4x 的焦点为焦点,以直线y =±x 为渐近线的双曲线标准方程为________. 【答案】x 2

12-y

2

12

=1.

【解析】由题意设双曲线的标准方程为22221x y a b

-=,y 2

=4x 的焦点为()1,0,则双曲线的焦

点为()1,0;y =±x 为双曲线的渐近线,则1b a =,又因222a b c +=,所以2211,22

a b ==,故双曲线标准方程为x 2

12-y

2

12

=1.

2.已知双曲线22

:

1916

x y C -=的左、右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ?的面积等于___________.

【答案】48

【解析】由题意得101692||21=+=F F ,所以10||2=PF ,根据双曲线的定义得

16610||1=+=PF ,12PF F ?是等腰三角形,1PF 边上的高为681022=-,所以12

PF F ?的面积等于

481662

1

=??. 【考点2】双曲线的几何性质 【备考知识梳理】 1.双曲线的几何性质 焦点在x 轴上

焦点在y 轴上

图形

标准方程

22

221(0,0)x y a b a b

-=>> 22

2

21(0,0)y x a b a b

-=>> 焦点 (±c,0)

(0,±c )

焦距

|F 1F 2|=2c (c 2

=a 2

+b 2

)

2.等轴双曲线: 实轴与虚轴相等的双曲线叫等轴双曲线,,其标准方程为2

2

(0)x y λλ-=≠,,渐近线为y x =±. 【规律方法技巧】

1.求解与双曲线性质有关的问题时要结合图像进行分析,围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.

2.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用.

3.求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合

222c b a =+化出关于,a c 的式子,再利用c

e a

=

,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:2222

22c a b e a a +===22

1b a +?b a =. 4.双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b y x a =±,可变形为x y

a b =±,即

22

220x y a b

-=,所以双曲线的渐近线方程可以看作把其标准方程中的1换为0得来的. 4.椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为22b a

是过椭圆焦点的直线被椭圆所截得弦长的最小值.

5. 双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞). 【考点针对训练】

1.双曲线22

145x y -=的离心率为 ▲ .

【答案】3

2

【解析】由题意得22234,59.2

c a b c e a ==?=?=

= 2.双曲线

116

92

2=-y x 的焦点到渐近线的距离为 . 【答案】4

【解析】焦点()5,0±,渐近线43y x =±,即430x y -=,则2045d ==.

【考点3】直线与双曲线的位置关系 【备考知识梳理】

设双曲线的方程为22

221(0,0)x y a b a b

-=>>,直线0Ax By C ++=,将直线方程与双曲线方

程联立,消去y 得到关于x 的方程2

0mx nx p ++=.

(1) 若m ≠0,当△>0时,直线与双曲线有两个交点.当△=0时,直线与双曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与双曲线无公共点.

(2)当m =0时,直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行. 【规律方法技巧】

1. 直线方程与椭圆方程联立,消元后得到一元二次方程,则一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,常设出交点坐标,用根与系数关系将横坐标之和与之积表示出来,这是进一步解题的基础.

2.直线y =kx +b (k ≠0)与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |= 1+k 2

|x 1-x 2|= 1+k 2

·

x 1+x 2

2

-4x 1x 2=

1+1

k

2·|y 1-y 2|=

1+1

k

y 1+y 22

-4y 1y 2.

3.对中点弦问题常用点差法和参数法. 【考点针对训练】

1.如图,双曲线的中心在坐标原点O ,, A C 分别是双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 为双曲线的左焦点,直线AB 与F C 相交于点D .若双曲线的离心率为2,则B D F

的余弦值是

_____________.

7 【解析】可设双曲线方程为22

221x y a b

-=,即得(0,)A b ,(0,)C b -,(,0)B a -,(,0)F c -,

所以AB 直线方程为1x y a b -

+=,FC 直线方程为1x y c b --=,又2c

a =,把AB 和FC 的直线方程联立解得4(,)33a

b D -

-,又222b c a =-,所以3b a =,即43

(,)3a D -,所以有4323()()33a a DF c =-+

=-,3()3a DB =,则22331()339a a DB DF a =

?-=,22237||()()333

a DF a a =-+=,2232||()()333a DB a a =+=,又2

179

cos 14||||2733a DB DF BDF DB DF a a

?===?? 2.如图,1F 、2F 是双曲线)0,0(122

22>>=-b a b

y a x 的左、右焦点,过1F 的直线l 与双曲线

的左右两支分别交于点A 、B .若2ABF ?为等边三角形,则双曲线的离心率为

_________________.

【答案】7

【解析】根据双曲线的定义,可得12||||2BF BF a -=,∵2ABF ?是等边三角形,即

2||||BF AB =,

∴12||||2BF BF a -=,即11||||||2BF AB AF a -==,又∵21||||2AF AF a -=,∴

21||||24AF AF a a =+=,

∵12AF F ?中,1||2AF a =,2||4AF a =,0

12120F AF ∠=,∴

2220121212||||||2||||cos120F F AF AF AF AF =+-,即

22221

4416224()282

c a a a a a =+-???-=,

解之得:7c a =,由此可得双曲线的离心率为7c

e a

==

【两年模拟详解析】

1. 【南京市、盐城市2017届高三年级第一次模拟】设双曲线2

221(0)x y a a

-=>的一条渐近

线的倾斜角为30?,则该双曲线的离心率为 ▲ . 【答案】

3

3

【解析】双曲线渐近线方程为x y a =±

,所以123tan 3032a c e a =?==?=

2.【镇江市2017届高三年级第一次模拟】双曲线),(00122

22>>=-b a b

y a x 的焦点到相应准

线的距离等于实轴长,则双曲线的离心率为 .

【答案】1【解析】由题意得21012222

+=?=--?=-e e e a c

a c

3. 【2017年第三次全国大联考江苏卷】直线:210l y x =+过双曲线22

221(0,0)

x y a b a b

-=>>一个焦点且与其一条渐近线平行,则双曲线方程为_____________.

【答案】22

1520

x y -=

【解析】由题意得(5,0),5F c -=,2b a =,所以22

5,20,a b ==双曲线方程为221520

x y -=.

4.【2017年第一次全国大联考江苏卷】在平面直角坐标系xOy 中,与双曲线2

213

x y -=有相

同渐近线,且位于x 轴上的焦点到渐近线距离为2的双曲线的标准方程为____________.

【答案】22

1124

x y -=

【解析】与双曲线22

13x y -=有相同渐近线的双曲线的标准方程可设为223

x y λ-=,因为双

曲线焦点在x 轴上,故0,λ>又焦点到渐近线距离为2,所以4λ=,所求方程为22

1124

x y

-=.

5. 【2017年高考原创押题预测卷01(江苏卷)】已知双曲线22

1()x ny n +=∈R 与椭圆

22

162

x y +=有相同的焦点,则该双曲线的渐近线方程为 .

【答案】y =

6. 【2017年高考原创押题预测卷03(江苏卷)】经过双曲线22

22:1x y C a b

-=(0,0)a b >>的左

焦点F 与圆222:O x y a +=相切的直线,交双曲线的两条渐近线于,A B 两点,若||3AB a =,则双曲线C 的离心率为 . 【答案】2或

23

【解析】由题意不妨设圆的切线过焦点1(,0)F c -,借助图形可得其斜率a

k b

=

,方程为()a y x c b =+与渐近线b y x a =联立可解得交点横坐标为2122

a c x

b a =-;方程为()a

y x c b =+与渐近线b y x a

=-联立可解得交点横坐标为22a x c =-,所以222

12222212||||||c a b x x a b a c b a c -=+=

--,21221|3a x x a b +-=,即12||3c

x x a b

-也即222223||c a b a b b a c ?=-,所以

2224(1)3(2)e e -=-,即42316160e e -+=,解之得24e =或24

3

e =,所以2e =或23e ,故

答案为:2或

23

7. 【泰州市2016届高三第一次模拟考试】在平面直角坐标系xOy 中,双曲线2

212

x y -=的实轴长为 . 【答案】22

【解析】由双曲线方程得,2a =

222a =

8.【南京市、盐城市2016届高三年级第二次模拟考试】在平面直角坐标系xOy 中,抛物线y

2

=2px (p >0) 的焦点为F ,双曲线22

221(0,0)

x y a b a b -=>>的两条渐近线分别与抛物线交于A ,

B 两点(A ,B 异于坐标原点O ).若直线AB 恰好过点F ,则双曲线的渐近线方程是 .

【答案】x y 2±=

【解析】由题意得:一条渐近线过点),2

(

p p ,因此斜率为22

=p p

,双曲线的渐近线方程是

x y 2±=.

9.【南京市2016届高三年级第三次模拟考试】设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为 . 【答案】5

【解析】不妨设22221,(c,0)x y F a b -=,则点P(c,2b)-±,从而有222

222415 5.c b c e a b a

-=?=?=

10.【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】若双曲线221x my +=过点()

22-,,则该双曲线的虚轴长为 ▲ . 【答案】4

【解析】由题意得1

241,4

m m +==-,因此双曲线的虚轴长为22 4.?=

11.【盐城市2016届高三年级第三次模拟考试】以双曲线22

221(0,0)x y a b a b

-=>>的右焦点F

为圆心,a 为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为 ▲ . 【答案】2

【解析】由题意得.2=

?=e b a

12. 中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆:1)2(2

2

=+-y x 都相切,则双曲线C 的离心率是_______________. 【答案】

233

或2

13.已知F 2,F 1是双曲线22

221

(0,0)y x a b a b

-=>>的上,下两个焦点,点F 2关于渐近线的

对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为______. 【答案】2

【解析】设点F 2关于渐近线a y x b =的对称点为(,)M x y ,由已知得22

y c a x

b y

c b

x a +?=????-?=-??,解得

2

22ab x c a y c c ?

=????=-??

,又以F 1为圆心,|OF 1|为半径的圆的方程为222

()x y c c ++=,把点M 的坐标代入上式得224

22

244a b a c c c +=,又222a b c +=,所以222444()4a c a a c -+=,解得2c

e a

=

=. 14.设12,F F 分别是双曲线22

22:1(0,0)x y C a b a b

-=>>的左、右焦点,P 是C 的右支上的点,

射线PT 平分12F PF ∠,过原点O 作PT 的平行线交1PF 于点M ,若121

||||3

MP F F =,则C 的离心率为____________. 【答案】

32

【解析】设PT 交x 轴于点T ,1||PF m =,则2||2PF m a =-,1212||||33

c

MP F F =

=

,由于//OM PT ,得1111||||||||F M F O F P FT =,即122

3||m c

c m F F -=,则1

||23

mc FT m c =-,所以21

||2||223

mc

F T c FT c m c

=-=--, 又PT 是12F PF ∠的角平分线,则有1122||||||||F P FT F P F T =,代入整理得43

232

c m a m c a -=-?=,所以C 的离心率为3

2

.

【一年原创真预测】

1. 若双曲线22221x y a b

-=(a>0,b>0)的焦点在x 轴上,过点()2,1作圆22

4x y +=的切线,切

点分别为,A B ,直线AB 恰好经过()(),0,0,a b 点,则双曲线方程为 .

【答案】

221416

x y -=. 【解析】设)1,2(M ,圆2

2

4x y +=的圆心为O ,则AB 是圆2

2

4x y +=与以OM 为直径的圆的公共弦所在直线,以OM 为直径的圆的方程为4

5

)2

1()1(2

2

=

-+-y x ,即0222=--+y x y x ,两圆方程相减,即得AB 的方程为42=+y x ,则直线与坐标轴的交

点为()()4,0,0,2.又因为焦点在x 轴上,则24a =,2

16b =,所以双曲线方程为221416

x y

-=.

【入选理由】本题考查求双曲线的方程,圆的方程,圆的公共弦,以及平面几何等基础知识,意在考查分析问题、解决问题的能力、基本运算能力及推理能力,而此题巧妙地利用了平面几何知识,避免了烦琐的运算,故选此题.

2.已知双曲线)0,0(12222>>=-b a b y a x 一条渐近线的倾斜角的取值范围??

?

???3,4ππ,则该双曲

线的离心率的取值范围是________________. 【答案】[2,2]

【解析】因为一条渐近线的倾斜角的取值范围??

?

?

??3,4ππ,所以22222221313242422,b b a b c c a a a a a

+≤≤?≤≤?≤≤?≤≤?≤≤所以离心率取值

范围为2,2].

【入选理由】本题主要考查了双曲线的几何性质等基础知识,意在考查分析问题,解决问题的能力,基本运算能力,推理能力,及转化思想.,是高考常考题型, 故选此题.

3. 点(,0)F c 为双曲线22

221(0,0)x y a b a b

-=>>的右焦点,点P 为双曲线左支上一点,线段PF

与圆22

2

4b x y +=相切于点Q ,且1

=2

PQ PF ,则双曲线的离心率等于__________.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线 考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大. 圆锥曲线的定义、标准方程与几何性质 |x|≤a,|y|≤b |x|≥a x≥0

热点一 圆锥曲线的定义与标准方程 例1 若椭圆C :x 29+y 2 2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( ) A .30° B .60° C .120° D .150° (2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-1 2的一个焦点重合,且在抛物线上有一 动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1 解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中, 由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12. 又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y . 根据抛物线的定义可知m =|PF |-1, 设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |. 易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4| 5 -1=5-1. 思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图. (1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 2 .双曲线x 2-y 2=1的渐近线与椭 圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 2 2=1 B.x 212+y 2 6=1 C.x 216+y 2 4 =1 D.x 220+y 2 5 =1

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关文档
相关文档 最新文档