文档库 最新最全的文档下载
当前位置:文档库 › 超静定结构的受力分析及特性

超静定结构的受力分析及特性

超静定结构的受力分析及特性

一、超静定结构的特征及超静定次数

超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。

结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。

通常采用去除多余约束的方法来确定结构的超静定次数。即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。

去除约束的方法有以下几种:

(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。

(二)切断一根两端刚接的杆件,相当于去除三个约束。

(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。

(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。

去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。

去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。再用其他去除多余约束的方案确定其超静定次数,结果是相同的。

二、力法的基本原理

(一)力法基本结构和基本体系

去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。去除多余约束后的结构称为力法基本结构。力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。

选取力法基本结构应注意下面两点:

1.基本结构一般为静定结构,即无多余约束的几何不变体系。有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。

2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。

(二)力法典型方程及其意义

根据原结构在荷载、温度变化、支座位移等因素作用下产生的已知位移与基本结构在各多余未知力以及与原结构相同的荷载、温度变化、支座位移等因素作用下产生的位移必须相同的条件,由叠加原理,可得n次超静定结构的力法典型方程为

式中 Xi 为多余未知力(i=1、2、…、,2);δij钆为基本结构仅由Xj=1 为多余未知力(j=1、2、…、n)产生的沿Xi 方向的位移、为基本结构的柔度系

数;Δip、Δit、Δic分别为基本结构仅由荷载、温度变化、支座位移产生的沿Xi 方向的'位移,为力法典型方程的自由项;Δi为原超静定结构在荷载、温度变化、支座位移作用下的已知位移(如结构边界处的已知支座位移条件、杆件变形后的已知位移连续条件等)。

力法典型方程(4—1)也称为变形协调方程。其中第一个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移等共同作用下,在Xl作用点沿Xl 作用方向产生的位移,等于原结构的已知相应位移Δ1;第二个方程表示基本结构

在n个多余未知力、荷载、温度变化、支座位移共同作用下,在X2作用点沿X2作用方向产生的位移,等于原结构的已知相应位移Δ2。其余各式的意义可按此类推。

各多余未知力Xi的大小和方向必须受力法典型方程的约束,多余约束力与变形协调条件是一一对应的,故满足力法典型方程的各多余未知力的解是唯一真实的解。

同一超静定结构,可以选取不同的基本体系,其相应的力法典型方程也就表达了不同的变形协调条件。不管选取哪种基本体系,求得的最后内力总是相同的。

图4—2a所示体系为一次超静定结构,如取图4—2b所示的基本体系,则力法典型方程为δ11X1 +Δ1p=0;如取图4—2c所示的基本体系,则力法典型方程为δ11X1 +Δ1p= —X1l/EA。

图4-2

对于图4—2d所示的一次超静定结构,如取图4—2e、f所示的基本体系,则相应的力法典型方程分别为δ11X1 +Δ1p=0、δ11X1 +Δ1p= —X1/kN。

图4—3a所示一次超静定结构的支座B有已知的竖向位移a,如取图4—3b所示的基本体系,力法典型方程为δ11X1 = -a;如取图4—3c所示的基本体系,力法典型方程为δ11X1 +Δ1C=0。

图4-3

(三)系数和自由项的计算

力法典型方程中的系数和自由项都是静定基本结构仅由单位力、实际荷载、温度变化、支座位移产生的位移,它们均可按上述各自的定义,用相应的位移计算公式计算。

力法典型方程中的系数δii称为主系数,它们恒为正值;δij(i ≠ j)称为副系数,它们可为正值、负值、也可为零,根据位移互等定理有δij=δji;各自由项的值可为正值、负值、也可为零。

(四)计算超静定结构的内力

由力法典型方程求出各多余未知力Xi 后,将Xi 和原荷载作用在基本结构上,再根据求作静定结构内力图的方法,作出基本结构的内力图就是超静定结构的内力图。或者也可通过下述叠加方法,计算结构的最后内力。

式中Mi、Vi、Ni分别为Xi=1引起的基本结构的弯矩、剪力、轴力;Mp、Vp、Np分别为荷载引起的基本结构的弯矩、剪力、轴力。

对梁和刚架,通常的做法是先根据式(4—2)中的第一式求出各杆端弯矩,再用直杆弯矩图的叠加法作出各杆的弯矩图,然后根据弯矩图由静力平衡条件求出各杆端的剪力和轴力,并据此作出剪力图和轴力图。

三、超静定结构的位移计算

超静定结构的位移计算仍应用变形体系虚功原理和单位荷载法。在具体计算时,为了使计算简便,其虚设状态(即单位力状态)可采用原超静定结构的任一静定基本结构。位移计算的一般公式如下。

(一)荷载作用引起的位移计算公式

(二)温度变化引起的位移计算公式

(三)支座位移引起的位移计算公式

上面三式中的Mi、Ni、Vi和Ri为虚设状态(原超静定结构的静定基本结构)的弯矩、轴力、剪力和支座反力;M、N、V、Mt、Nt、Vt、Mc、Nc、Vc分别为原超静定结构在荷载、温度变化、支座位移作用下产生的弯矩、轴力、剪力。

与静定结构一样,在符合一定的条件时,超静定结构的位移计算也可采用简化(实用)计算公式,以及采用图形相乘法代替积分计算。

四、超静定结构内力图的校核

超静定结构的内力图必须同时满足静力平衡条件和原结构的变形条件。

1.平衡条件校核

根据求得的反力和内力,取整个结构或结构的任一部分为隔离体,校核其是否满足静力平衡条件。

2.变形条件校核

根据已求得的内力计算超静定结构的位移,校核其是否与原结构的已知位移条件一致。对于具有无铰闭合外形的结构,在荷载作用下,校核任一切断截面两侧的相对转角时,位移条件的校核公式可简化为

超静定结构的受力分析及特性

超静定结构的受力分析及特性 一、超静定结构的特征及超静定次数 超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。 结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。 通常采用去除多余约束的方法来确定结构的超静定次数。即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。 去除约束的方法有以下几种: (一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。 (二)切断一根两端刚接的杆件,相当于去除三个约束。 (三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。 (四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。 去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。 去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。再用其他去除多余约束的方案确定其超静定次数,结果是相同的。 二、力法的基本原理 (一)力法基本结构和基本体系 去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。去除多余约束后的结构称为力法基本结构。力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。

选取力法基本结构应注意下面两点: 1.基本结构一般为静定结构,即无多余约束的几何不变体系。有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。 2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。 (二)力法典型方程及其意义 根据原结构在荷载、温度变化、支座位移等因素作用下产生的已知位移与基本结构在各多余未知力以及与原结构相同的荷载、温度变化、支座位移等因素作用下产生的位移必须相同的条件,由叠加原理,可得n次超静定结构的力法典型方程为 式中 Xi 为多余未知力(i=1、2、…、,2);δij钆为基本结构仅由Xj=1 为多余未知力(j=1、2、…、n)产生的沿Xi 方向的位移、为基本结构的柔度系 数;Δip、Δit、Δic分别为基本结构仅由荷载、温度变化、支座位移产生的沿Xi 方向的'位移,为力法典型方程的自由项;Δi为原超静定结构在荷载、温度变化、支座位移作用下的已知位移(如结构边界处的已知支座位移条件、杆件变形后的已知位移连续条件等)。 力法典型方程(4—1)也称为变形协调方程。其中第一个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移等共同作用下,在Xl作用点沿Xl 作用方向产生的位移,等于原结构的已知相应位移Δ1;第二个方程表示基本结构 在n个多余未知力、荷载、温度变化、支座位移共同作用下,在X2作用点沿X2作用方向产生的位移,等于原结构的已知相应位移Δ2。其余各式的意义可按此类推。 各多余未知力Xi的大小和方向必须受力法典型方程的约束,多余约束力与变形协调条件是一一对应的,故满足力法典型方程的各多余未知力的解是唯一真实的解。 同一超静定结构,可以选取不同的基本体系,其相应的力法典型方程也就表达了不同的变形协调条件。不管选取哪种基本体系,求得的最后内力总是相同的。 图4—2a所示体系为一次超静定结构,如取图4—2b所示的基本体系,则力法典型方程为δ11X1 +Δ1p=0;如取图4—2c所示的基本体系,则力法典型方程为δ11X1 +Δ1p= —X1l/EA。 图4-2

超静定结构(精)

第4章超静定结构 §4.1 超静定结构特性 ●由于多余约束的存在产生的影响 1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。 2. 具有较强的防护能力,抵抗突然破坏。 3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。 4. 结构刚度和稳定性都有所提高。 ●各杆刚度改变对内力的影响 1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。 2. 计算内力时,允许采用相对刚度。 3. 设计结构断面时,需要经过一个试算过程。 4. 可通过改变杆件刚度达到调整内力状态目的。 ●温度和沉陷等变形因素的影响 1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。 2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。不应盲目增大结构截面尺寸,以期提高结构抵抗能力。 3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。 §4.2 力法原理 ●计算超静定结构的最基本方法 超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。 ●基本结构的选择(解题技巧) 1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。 2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。 3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。 4. 对称取基本结构;或利用对称性取半结构;或求弹性中心;以减少未知力数目,并使力法方程解耦。 ●力法典型方程 典型方程可写成矩阵形式: δX+ Δ = C (4.2.1) 式中,δ为柔度系数矩阵(对称方阵);X为多余未知力列阵;Δ为自由项列阵(外因作用下的广义位移列阵);C为原结构多余联系处的已知位移(不一定为零)列阵。 ●力法的解题步骤 1. 确定基本未知量,合理选取基本结构。 2. 根据多余联系处的位移(变形)协调条件,建立力法方程。

次内力

次内力:超静定预应力混凝土在各种内外因素的综合影响下,结构因受到强迫的挠曲变形或轴向伸缩变形,所以在结构多余约束处产生多余的约束力,从而引起结构附加内力,这部分附加内力一般统称为次内力 转对预应力次内力的正确认识 默认分类2010-03-29 12:38:15 阅读38 评论0 字号:大中小 预应力对超静定结构和静定结构作用的根本区别在于预应力作用对超静定结构 产生了次内力。在理解次内力的概念之前,我们首先从结构力学的有关理论出发,就静 定结构和超静定结构的受力特性作一些对比分析。 1 静定结构和超静定结构的受力特性 (1)当无外荷载作用时,超静定结构有产生内力的可能性,而静定结构则不会。我们知道,温度改变、支座沉陷、杆长误差和材料收缩等因素都不会在静定结构中产生内力,但对于超静定结构则会产生内力。在结构力学中将无外荷载时结构的内力称为原始内力或初内力,也就是谢超静定结构是会有原始内力的,但静定结构则不会有原始内力。 (2)局部荷载对结构的影响范围,在超静定结构中比在静定结构中为大。 (3)当平衡力系加于静定结构的一个内部不变部分时,不会使约束引起附加的反 力,结构的其余部分都没有内力,但同样的情况对于超静定结构,其余的部分则可能产生内力 2 次内力的基本概念 可以从两个角度去认识预应力作用在超静定结构中引起的次内力。 其一,由 于超静定结构受到预应力作用时将会产生变形的趋势,而这些变形趋势必将受到结构冗余杆件的约束,从而在这些冗余约束处产生了次反力,这些次反力在结构中引起的内力即为次内力. 其二,将静定结构或超 静定结构的静定基本结构体系在预应力作用下产生的内力称为主内力,将预应力作用 在整个结构中产生的结构内力称为综合内力,综合内力与主内力之差即为次内力。因此,预应力结构的非预应力构件没有主内力,其次内力即为综合内力;静定结构的次内力为零,主内力即为综合内力。结合静定结构和超静定结构的受力特 性,可以这样理解预应力作用引起的次内力: (1)由于预应力作用,结构中的冗余约束对结构的变形趋势产生附加约束,可以将 这种约束作用视为类似于温度改变、支座沉陷、杆长误差或材料收缩的一种作用,它使得超静定结构在无外荷载作用时产生了原始内力。 (2)如果将预应力作用转化为等效荷载由于等效荷载本身在任何情况下都是自平 衡的,将这个自平衡力系施加于超静定结构,不仅在预应力梁中会产生内力,而且还会使结构的其他部分产生内力(如与之相连的框架柱)。 (3)若将预应力构件抽掉预应力筋和锚具作为隔离体,则在梁上作用的不仅有等效 荷载,而且还有支座提供的次反力。由于隔离构件必须满足平衡条件,预应力本身是自平衡力系,因此作用在隔离梁端部的次反力也必然是自平衡力系。

建筑力学大纲 知识点第九章位移法

第9章位移法 用计算机进行结构分析时通常以位移法原理为基础。位移法是求解超静定结构的另一基本方法。 9.1 等截面单跨超静定梁的杆端内力 位移法中用加约束的办法将结构中的各杆件均变成单跨超静定梁。在不计轴向变形的情况下,单跨超静定梁有图9-1中所示的二种形式。它们分别为:两端固定梁;一端固定另端链杆(铰)支座梁。 9.1.1 杆端力与杆端位移的正、负号规定 1.杆端力的正、负号规定 杆端弯矩:顺时针转向为正,逆时针转向为负。对结点而言,则逆时针转向为正,顺时针转向为负。 杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。 2.杆端位移的正、负号规定 杆端转角:顺时针方向转动为正,逆时针方向转动为负。 杆端相对线位移:两杆端连线发生顺时针方向转动时,相对线位移Δ为正,反之为负。 9.1.2 荷载作用下等截面单跨超静定梁的杆端力———载常数 荷载所引起的杆端弯矩和杆端剪力分别称为固端弯矩和固端剪力,统称为载常数。 9.1.3杆端单位位移所引起的等截面单跨超静定梁的杆端力—刚度系数(形 常数) 杆端单位位移所引起的杆端力称为刚度系数或称形常数。 §9.2 位移法的基本概念 1.基本未知量 当不计轴向变形时,刚结点1不发生线位移,只发生角位移Z 1 ,且A1和杆B1 的1端发生相同的转角Z 1。刚结点1的角位移Z 1 就是求解该刚架的位移法基本未知

量。 图9 -7 2.基本结构 在刚结点1上加一限制转动(不限制线位移)的约束,称之为附加刚臂,如图9-7(b)所示。因不计轴向变形,杆A1变成一端固定一端铰支梁,杆B1变成两端固定梁。原刚架则变成单跨超静定梁系,称为位移法基本结构。 3.荷载在附加刚臂中产生的反力矩R 1F 在基本结构图9-7(b)上施加原结构的荷载,得到的结构,称为位移法基本体系,杆B1发生虚线所示的变形,但杆端1截面被刚臂制约,不产生角位移,使得刚臂中出现了反力矩R 1F 。 4.刚臂转动引起的刚臂反力矩R 11 为使基本结构与原结构一致,需将刚臂(连同刚结点1)转动一角度Z 1,使 得基本结构的结点1 转角与原结构虚线所示自然变形状态刚结点转角相同。刚臂转动角度Z 1所引起的刚臂反力矩用R 11 表示,如图9-7(d)中所示。 5.刚臂总反力矩R 1,位移法基本方程 荷载作用于基本结构,引起刚臂反力矩R 1F ;刚结点转角Z 1引起刚臂反力矩R 11。二者之和为总反力矩R 1,即 1111F R R R =+

结构力学

第一讲平面体系的几何组成分析及静定结构受力分析 【内容提要】 平面体系的基本概念,几何不变体系的组成规律及其应用。静定结构受力分析方法,反力、内力计算与内力图绘制,静定结构特性及其应用。 【重点、难点】 静定结构受力分析方法,反力、内力计算与内力图绘制 一、平面体系的几何组成分析 (一)几何组成分析 按机械运动和几何学的观点,对结构或体系的组成形式进行分析。 (二)刚片 结构由杆(构)件组成,在几何分析时,不考虑杆件微小应变的影响,即每根杆件当做刚片。 (三)几何不变体系 体系的形状(或构成结构各杆的相对位置)保持不变,称为几何不变体系,如图6-1-1 (四)几何可变体系 体系的位置和形状可以改变的结构,如图6-1-2。 图6-1-1 图6-1-2 (五)自由度 确定体系位置所需的独立运动参数数目。如一个刚片在平面内具有3个自由度。(六)约束

减少体系独立运动参数(自由度)的装置。 1.外部约束 指体系与基础之间的约束,如链杆(或称活动铰),支座(固定铰、定向铰、固定支座)。2.内部约束 指体系内部各杆间的联系,如铰接点,刚接点,链杆。 规则一:一根链杆相当于一个约束。 规则二:一个单铰(只连接2个刚片)相当于两个约束。 推论:一个连接n 个刚片的铰(复铰)相当于(n- 1)个单铰。 规则三:一个单刚性结点相当于三个约束。 推论:一个连接个刚片的复刚性结点相当于( n- 1)个单刚性结点。 3.必要约束 如果在体系中增加一个约束,体系减少一个自由度,则此约束为必要约束。 4.多余约束 如果体系中增加一个约束,对体系的独立运动参数无影响,则此约束称为多余约束。(七)等效作用 1.虚铰 两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作用与实铰相同。 平行链杆的交点在无限远处。 2.等效刚片 一个内部几何不变的体系,可用一个刚片来代替。 3.等效链杆。 两端为铰的非直线形杆,可用一连接两铰的直线链杆代 二、几何组成分析 (一)几何不变体系组成的基本规则

第三章 静定结构的受力分析

第三章静定结构的受力计算 1. 教学内容 从几何构造分析的角度看,结构必须是几何不变体系。根据多余约束n ,几何不变体系又分为: 有多余约束( n > 0)的几何不变体系——超静定结构; 无多余约束( n = 0)的几何不变体系——静定结构。 从求解内力和反力的方法也可以认为: 静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。 超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。 2. 教学目的 进一步巩固杆件受力分析和内力分析的特点; 理解多跨静定梁、静定平面刚架、静定桁架的概念; 熟练掌握多跨静定梁、静定平面刚架、静定桁架内力的计算方法,能够画出内力图; 理解截面法、结点法、联合法,熟练求出静定桁架的内力。 3. 主要章节 第一节、单跨静定梁 第二节、多跨静定梁 第三节静定平面刚 第四节、三铰拱架 第五节、静定平面桁架 第六节、组合结构 4. 学习指导 本章所学内容的基础是以前所学的“隔离体和平衡方程”,但是不能认为已经学过了,就有所放松。其实,在静定结构的静力分析中,虽然基本原理不多,平衡方程只有几种形式,但是其变化是无穷的,因此重要的是知识的应用能力。为了能够熟中生巧,在学习时应多做练习。 5. 参考资料

《建筑力学教程》P21~P57 第一节、单跨静定梁 一. 教学目的 复习材料力学中的内力概念和计算方法,梁的内力图的画法; 熟练掌握各种荷载作用下的梁的内力图画法; 掌握叠加法画弯矩图。 二. 主要内容 1. 内力的概念和表示 2. 内力的计算方法 3. 内力图与荷载的关系 4. 分段叠加法 三. 参考资料 《建筑力学》P21~P26 各种《材料力学》教材 3.1.1 内力的概念和表示 在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N、剪力F Q 和弯矩M(图3-1)。 轴力----截面上应力沿轴线方向的合力,轴力以拉力为正。 剪力----截面上应力沿杆轴法线方向的合力,剪力以截开部分顺时针转向为正。 弯矩----截面上应力对截面形心的力矩,在水平杆件中,当弯矩使杆件下部受拉时弯矩为正。

静定结构受力分析和特性静定结构的定义静定结构是没有

第二节静定结构受力分析和特性 一、静定结构的定义 静定结构是没有多余约束的几何不变体系。在任意荷载作用下,其全部支座反力和内力都可由静力平衡条件确定,即满足静力平衡条件的静定结构的反力和内力的解答是唯一的。但必须指出,静定结构任意截面上的应力和应变却不能仅由静力平衡条件确定,还需要附加其他条件和假设才能求解。 二、计算静定结构反力和内力的基本方法 在静定结构的受力分析中不涉及结构材料的性质,将整个结构或结构中的任一杆件都作为刚体看待。静定结构受力分析的基本方法有以下三种。 (一)数解法 将受力结构的整体及结构中的某个或某些隔离体作为计算对象,根据静力平衡条件建立力系的平衡方程,再由平衡方程求解结构的支座反力和内力。 (二)图解法 静力平衡条件也可用力系图解法中的闭合力多边形和闭合索多边形来代替。其中闭合力多边形相当于静力投影平衡方程,闭合索多边形相当于力矩平衡方程。据此即可用图解法确定静定结构的支座反力和内力。 (三)基于刚体系虚位移原理的方法 受力处于平衡的刚体系,要求该力系在满足刚体系约束条件的微小的虚位移上所做的虚功总和等于零。据此,如欲求静定结构上某约束力(反力或内力)时,可去除相应的约束,使所得的机构沿该约束力方向产生微小的虚位移,然后由虚位移原理即可求出该约束力。 三、直杆弯矩图的叠加法 绘制线弹性结构中直杆段的弯矩图,采用直杆弯矩图的叠加法。直杆弯矩图的叠加法可叙述为:任一直杆,如果已知两端的弯矩,则杆件的弯矩图等于在两端弯矩坐标的连线上再叠加将该杆作为简支梁在荷载作用下的弯矩图,如图2-1所示。作弯矩图时,弯矩值坐标绘在杆件受拉一边,弯矩图中不要标明正、负号。

超静定混凝土结构内力分析

超静定混凝土结构内力分析 1、前言 目前在超静定混凝土结构设计中,结构的内力分析、构件截面设计是不相协调的,结构的内力分析仍采用传统的弹性理论,而结构的截面设计考虑了材料的塑性性能。实际上,超静定混凝土在承载过程中,由于混凝土的非弹性变形、裂缝的出现和发展、钢筋的锚固滑移,以及塑性铰的形成和转动等因素的影响,结构构件的刚度在各受力阶段不断发生变化,从而使结构的实际内力与变形明显地不同于按刚度不变的弹性理论算得的结果。所以在设计混凝土连续梁、板时,恰当地考虑结构的内力重分布,就能达到结构的内力分析和截面设计变形相协调的目的。 2、应力重分布及内力重分布的概念分析 钢筋混凝土受弯构件破坏的过程分为三个阶段:弹性阶段、带裂缝工作阶段及破坏阶段。在弹性阶段,应力沿截面高度的分布近似为直线,到了带裂缝阶段和破坏阶段,应力沿截面高度的分布就不再是直线了。这种由于钢筋混凝土的非弹性性质,使截面上应力的分布不再是从线弹性分布规律的现象,这称之为应力重分布。 应力重分布是指截面上应力之间的非弹性关系,它是静定的和超静定的钢筋混凝土结构都具有的一种基本属性。 结构计算出静力平衡条件外,还需按照变形协调条件才能确定内力的结构是超静定结构。超静定结构是具有多余约束的结构体系,它在弹性工作阶段各截面内力之间的关系是由各个构件弹性刚度决定的;到了带裂缝工作阶段,刚度就改变了,裂缝截面的刚度小于未开裂截面的;当内力最大的截面进入破坏阶段出现塑性铰后,结构的计算简图也改变了,致使各截面内力间的关系改变的更大。这种由于超静定钢筋混凝土结构非弹性性质而引起的各截面内力之间不再遵循弹性关系的现象,称之为塑性内力重分布。 由此可见应力重分布和内力重分布概念是不同的,一个指截面上应力重分布,一个是指结构截面内力间的关系不再服从线弹性分布规律,超静定结构所特有的一种现象。 3、内力充分的过程

结构力学作业参考

结构力学课程作业答案 第一章绪论 1、按照不同的构造特征和受力特点,平面杆件结构可分为哪几类? 2、何为静定结构和超静定结构? 从几何构造分析的角度看,结构必须是几何不变体系。根据多余约束 n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构; 无多余约束( n = 0)的几何不变体系——静定结构。 从求解内力和反力的方法也可以认为: 静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。 3、土建、水利等工程中的荷载,根据其不同的特征,主要有哪些分类? 第二章平面结构的几何组成分析 作业题: 1、何为平面体系的几何组成分析? 按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。 2、何为几何不变体系?何为几何可变体系? 几何不变体系—若不考虑材料的应变,体系的位置和形状不会改变。 几何可变体系—若不考虑材料的应变,体系的位置和形状是可以改变的。 3、几何组成分析的目的是什么? 1)保证结构的几何不变性,以确保结构能承受荷载和维持体系平衡. 2)判别某一体系是否为几何不变,从而决定它能否作为结构. 3)研究几何不变体系的组成规则,以保证所设计的结构是几何不变体系,从而能承受荷载而维持平衡. 4)根据体系的几何组成分析,正确区分静定结构和超静定结构,从而选择适当的计算方法进行结构的反力和内力计算. 5)通过几何组成分析,明确结构的构成特点,从而选择结构受力分析的顺序以简化计算. 4、何为一个体系的自由度?知悉体系计算自由度的公式。

超静定结构的内力状态与刚度

超静定结构的内力状态与刚度 超静定结构是指在给定约束条件下,系统的自由度数小于等于零的结构。在超静定结构中,由于自由度的减少,使得内力状态和刚度产生了一些特殊的变化。 我们来讨论超静定结构的内力状态。在超静定结构中,由于存在约束条件,结构的自由度数减少,因此内力状态也会发生变化。在正常的静定结构中,内力只有在受到外力作用时才会产生,而在超静定结构中,由于约束的存在,内力不仅会在受到外力作用时产生,还会在约束条件下产生。这就意味着,超静定结构中的内力状态是由外力和约束共同决定的。 我们来探讨超静定结构的刚度。刚度是指结构在受到外力作用下产生变形的能力。在超静定结构中,由于自由度的减少,刚度也会发生变化。在正常的静定结构中,刚度是通过弹性系数来表示的,而在超静定结构中,由于约束的存在,刚度的计算方法会有所不同。一种常见的计算方法是利用约束条件和弯矩-曲率关系来求解超静定结构的刚度。 在超静定结构的内力状态和刚度方面,还存在一些特殊情况和特点。首先,由于约束的存在,超静定结构的内力分布较为复杂。在一些情况下,约束条件会导致内力集中的现象,使得结构的某一部分承受较大的内力。其次,由于自由度的减少,超静定结构的刚度较大,

使得结构变形较小。这就意味着,超静定结构具有较高的刚度和较小的变形能力。此外,超静定结构还具有较好的稳定性和抗震性能,能够在一定程度上抵抗外界的振动和变形。 超静定结构的内力状态和刚度与普通的静定结构存在一些差异。由于约束的存在,超静定结构的内力状态较为复杂,并且刚度较大,使得结构具有较好的稳定性和抗震性能。在实际工程中,我们需要对超静定结构进行合理的设计和分析,以确保结构的安全和稳定性。因此,对于超静定结构的内力状态和刚度的研究具有重要的理论和实际意义。通过深入理解超静定结构的特点和行为规律,我们可以更好地应对工程实践中的挑战,为建筑安全和可持续发展做出贡献。

超静定结构的受力分析及特性超静定结构的特征及超静定

第四节超静定结构的受力分析及特性 一、超静定结构的特征及超静定次数 超静定结构的几何特征是除了保证结构的几何不变性所必须的约束外,还存在多余约束。 超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。 结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。 通常采用去除多余约束的方法来确定结构的超静定次数。即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。 去除约束的方法有以下几种: (一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。 (二)切断一根两端刚接的杆件,相当于去除三个约束。 (三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。 (四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。 去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。 去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。再用其他去除多余约束的方案确定其超静定次数,结果是相同的。 (a)(b) 图4-1

二、力法的基本原理 (一)力法基本结构和基本体系 去除超静定结构的多余约束,代以相应的未知力X i (i=1、2、…、n),X i 称为多余未知力或基本未知力,其方向可以任意假定。去除多余约束后的结构称为力法基本结构。力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。 选取力法基本结构应注意下面两点: 1.基本结构一般为静定结构,即无多余约束的几何不变体系。有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。 2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。

超静定次数

超静定次数 超静定次数是指在结构静力计算中计算的支反、节点反力及内力等个数超过结构的静定性自由度(f),即n>f,其中n是支反、节点反力及内力等的个数。超静定的结构需要在计算中使用其他方法,如力法、位移法、应力函数法等,来求解出结构的内力和反力等参数。 在实际工程设计中,很多结构都会存在超静定的情况,例如悬臂梁、桁架结构等。这些结构的超静定次数越高,其受力特性就会越复杂,计算难度也会随之增加。因此,对于超静定结构的分析和设计需要特别注意。 超静定结构的计算方法有很多种,其中比较常用的有力法和位移法。力法是指根据静力平衡方程和力的平衡原理,在给定的边界条件下,建立解线性方程组来求解未知反力和内力等参数。位移法是指根据受力材料的弹性模量和材料的变形特性,将结构的各部分视为弹性体,则结构的内力和变形等均可以表示为各个节点的位移的线性组合。由此,结构的内力、节点反力等参数可以通过节点位移的线性化组合得到。 除了力法和位移法,还有其他的结构分析方法,如应力函数法、有限元法等。根据实际情况的不同,应该选择不同的方法,以便更准确地预测结构的响应和性能。 在超静定结构的设计中,需要注意以下几点: 1.引入足够的支座刚度,以减小超静定的程度。 2.在计算中考虑结构的非线性特性,如材料的屈服和裂纹等影响,避免超静定现象对结构安全性的影响。

3.选择合适的计算方法,如力法和位移法等,确定结构的内力和反力等参数。 4.对于超静定的结构设计,需要进行应力和变形的详细分析和检查,避免出现结构失稳、材料破坏等不安全现象。 在超静定结构的设计和分析中,需要通过合理的设计和适当的计算方法,来保证结构的安全、稳定和可靠性。同时,应该深入了解不同的结构计算方法和分析工具,不断提升自身的技能和素质,以应对不同条件下的工程设计和分析挑战。

静定结构和超静定结构的优缺点及工程应用——200900201013

静定结构和超静定结构的优缺点及工程应用 一、静定结构和超静定结构的概念 静定结构与超静定结构都是几何不变体系。在几何构造方面,两者不同在于:静定结构无多余联系,而超静定结构则具有多余联系。 有多余约束( n > 0)的几何不变体系——超静定结构; 无多余约束( n = 0)的几何不变体系——静定结构。 静定结构──几何特征为无多余约束几何不变,是实际结构的基础。因为静定结构撤销约束或不适当的更改约束配置可以使其变成可变体系,而增加约束又可以使其成为有多余约束的不变体系(即超静定结构)。静定结构的约束反力或内力均能通过静力平衡方程求解, 也就是说,其未知的约束反力或内力的数目等于独立的静力平衡方程的数目。静定结构在工程中被广泛应用,同时是超静定结构分析的基础。 超静定结构——几何特征为几何不变但存在多余约束的结构体系,是实际工程经常采用的结构体系。由于多余约束的存在,使得该类结构在部分约束或连接失效后仍可以承担外荷载,但需要注意的是,此时的超静定结构的受力状态与以前是大不一样的,如果需要的话,要重新核算。因为其结构中有不需要的多余联系,所以所受的约束反力或内力仅凭静力平衡方程不能全部求解,也就是未知力的数目多于独立的静力平衡方程的个数。 二、静定结构的基本特性及优缺点 1、静定结构是几何不变体系,无多余约束,全部支座反力和内力只要用静力平衡条件就能确定,而且解答是唯一的。 2、静定结构的支座反力和内力与结构所用材料的性质、截面的大小和形状都没有关系。 3、静定结构在温度改变、支座移动、材料伸缩和制造误差等因素影响下,都不产生制作反力和内力。即没有荷载作用在静定结构上时,支座反力均为零,所以内力也均为零。 4、静定结构的局部平衡特性 在一组平衡力系作用下,如果静定结构中的某一几何不变部分可以与荷载平衡,则只会是该部分产生内力,其余部分的支座反力和内力均为零。当平衡力系作用于静定结构的任何本身几何不变部分上时,若设想其余部分均不受力而将它们撤去,则所剩部分由于本身是温度变化 (自由地产生弯曲变形,不产生内力) 支座移动(刚体位移,不产生内力)制造误差

结构力学基础概念

结构力学基本概念 第一章绪论 1、建筑物和工程设施中承受 ..称为工程结构,简称为结构。 ....的部分 ..、传递荷载 ....而起骨架作用 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 2、结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 3、结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。刚结点:既可以传递力,也可以传递力矩。 4、支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 5、在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全 弹性或弹塑性的。 6、荷载是主动 ..作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 7、根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 第二章结构的几何构造分析 1、在几何构造分析中,不考虑这种由于材料的应变所产生的变形 ..................。 2、杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 3、自由度:一个体系自由度的个数 ..。 .......的个数 ...可以独立改变的坐标 ......,等于这个体系运动时 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 4、凡是自由度 ..都是几何可变 ....体系。 .....的体系 ...的个数大于零 5、一个支杆(链杆)相当于一个约束。可以减少一个自由度 .......。 一个单.铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度 .......。 一个单.刚结(刚性结合)相当于三个约束,可以减少三个自由度 .......。 6、如果在一个体系中增加一个约束 ....。 .........,则此约束称为多余约束 ......,而体系的自由度并不因而减少 增加了约束,计算自由度会减少。因为w=s-n . 7、瞬变体系:本来是几何可变 ....、经微小位移 ....的体系称为瞬变体系 ....。 ....后又成为几何不变 8、实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上 交于一点,所构成的铰就叫实铰 ..。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点, 而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰 ..了。两根链杆所起的约束作用等 效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动 ..。 无穷远处的瞬铰:两个刚片(地基也算一个刚片),如果用两根平行链杆给链接上,两根链杆在两刚片 间没有交于一点,而是沿两根链杆的延长线交于无穷远处的一点,这就是无穷远处的瞬铰 .......了。两根链杆所 起的约束作用等效于在无穷远处的瞬铰所起的约束作用。通常所起作用为平动 ..。

考研结构力学的知识点梳理

第一章结构的几何构造分析 1 •瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。瞬变体系至少有一个多余约束。 2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬较。 3.关于无穷远处的瞬较: (1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。 (2)各个方向的无穷远点都在同一条直线上(广义)。 (3)有限点都不在无穷线上。 4.结构及和分析中的灵活处理: (1)去支座去二元体。体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。 (2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。 5.关于计算自由度:(基本不会考) (1),则体系中缺乏必要约束,是几何常变的。 (2)若,则体系具有保证几何不变所需的最少约束,若体系无多余约束, 则为几何不变,若有多余约束,则为几何可变。 (3),则体系具有多与约束。 是保证体系为几何不变的必要条件,而非充分条件。 若分析的体系没有与基础相连,应将计算出的W减去3. 第二章静定结构的受力分析 1.静定结构的一般性质: (1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全 部内力和反力。 (2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。 (3)静定结构的内力与杆件的刚度无关。 (4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。 (5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。 (6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性 叠加,以将复杂问题拆解为简单情况处理。 2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。 3.分段叠加法作弯矩图: (1)选定外力的不连续点为控制截面,求出控制截面的弯矩值。

超静定结构的概念和超静定次数的确定

第5章力法 5.1 超静定结构的概念和超静定次数的确定 1.超静定结构的概念 前面讨论的是静定结构,从本章开始我们讨论超静定结构的受力情况。关于结构的静定性可以从两个方面来定义从几何组成的角度来定义静定结构就是没有多余联系的几何不变体系;从受力的角度来定义,静定结构就是只用静力平衡方程就能求出全部反力和内力的结构。 现在,我们要讨论的是超静定结构。它同样可以从以上两个方面来定义,从几何组成的角度来定义,超静定结构就是具有多余联系的几何不变体系;从受力的角度来定义,超静定结构就是只用静力平衡方程不能求出全部的反力或内力的结构。如图 5.1(a)所示的简 支梁是静定的,当跨度增加时,其内力和变形都将迅速增加。为减少梁的内力和变形,在梁的中部增加一个支座,如图 5.1(b)所示,从几何组成的角度分析,它就变成具有一个多余联 系的结构。也正是由于这个多余联系的存在,使我们只用静力平衡方程就不能求出全部4个约束反力F ax、F ay、F by、F cy和全部内力。具有多余约束、仅用静力平衡条件不能求出全部支座反力或内力的结构称为超静定结构。图 5.1(b)和图5.2所示的连续梁和刚架都是超 静定结构。 图5.3给出了工程中常见的几种超静定梁、刚架、桁架、拱、组合结构和排架。本章讨论如何用力法计算这种类型的结构。 图5.1 图5.2

2.超静定次数的确定 力法是解超静定结构最基本的方法。用力法求解时,首先要确定结构的超静定次数。 通常将多余联系的数目或多余未知力的数目称为超静定结构的超静定次数。如果一个超静 定结构在去掉n 个联系后变成静定结构,那么,这个结构就是 n 次超静定。 显然,我们可用去掉多余联系使原来的超静定结构 (以后称原结构)变成静定结构的方 法来确定结构的超静定次数。去掉多余联系的方式,通常有以下几种: (1)去掉支座处的一根支杆或切断一根链杆,相当于去掉一个联系。如图 5.4所示结 构就是一次超静定结 构。图中原结构的多余联系去掉后用未知力 x i 代替。 图5.4 (4)在刚性联结处切断,相当于去掉三个联系 (图5.7)。 应用上述去掉多余联系的基本方式,可以确定结构的超静定次数。应该指出,同一个 超静定结构,可以采用不同方式去掉多余联系,如图 5.8(a )可以有三种不同的去约束方 法,分别如图 5.8(b )、(c )、(d )所示。无论采用何种方式,原结构的超静定次数都是相同 的。所以说去约束的方式不是惟一的。这里面所说的去掉“多余联系” (或“多余约 束”),是以保证结构是几何不变体系为前提的。如图 5.9(a )所示中的水平约束就不能去 掉,因为它是使这个结构保持几何不变的“必要约束” (或“必要联系”)。如果去掉水平 链杆(图5.9b ),则原体系就变成几何可变了。图5.5 去掉一个单皎,相当于去掉两个联系 (图把刚性联结改成单皎联结,相当于去掉一个联系 (图 图5.6

相关文档
相关文档 最新文档